Edit model card

Metrics

  • loss: 1.8402
  • accuracy: 0.8085
  • precision: 0.7983
  • recall: 0.8085
  • precision_macro: 0.6608
  • recall_macro: 0.6429
  • macro_fpr: 0.0935
  • weighted_fpr: 0.0732
  • weighted_specificity: 0.8548
  • macro_specificity: 0.9158
  • weighted_sensitivity: 0.8085
  • macro_sensitivity: 0.6429
  • f1_micro: 0.8085
  • f1_macro: 0.6478
  • f1_weighted: 0.8018
  • runtime: 131.6318
  • samples_per_second: 3.4110
  • steps_per_second: 0.4330

case-analysis-distilbert-base-cased

This model is a fine-tuned version of distilbert/distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8402
  • Accuracy: 0.8085
  • Precision: 0.7983
  • Recall: 0.8085
  • Precision Macro: 0.6461
  • Recall Macro: 0.6218
  • Macro Fpr: 0.0984
  • Weighted Fpr: 0.0771
  • Weighted Specificity: 0.8479
  • Macro Specificity: 0.9119
  • Weighted Sensitivity: 0.7996
  • Macro Sensitivity: 0.6218
  • F1 Micro: 0.7996
  • F1 Macro: 0.6245
  • F1 Weighted: 0.7887

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Precision Macro Recall Macro Macro Fpr Weighted Fpr Weighted Specificity Macro Specificity Weighted Sensitivity Macro Sensitivity F1 Micro F1 Macro F1 Weighted
No log 1.0 224 0.7001 0.7661 0.7311 0.7661 0.5791 0.5137 0.1330 0.0923 0.7614 0.8819 0.7661 0.5137 0.7661 0.5270 0.7333
No log 2.0 448 0.7388 0.7751 0.7315 0.7751 0.5585 0.5464 0.1208 0.0882 0.7908 0.8915 0.7751 0.5464 0.7751 0.5487 0.7493
0.7066 3.0 672 0.7229 0.8018 0.7605 0.8018 0.5932 0.5708 0.1076 0.0761 0.8090 0.9027 0.8018 0.5708 0.8018 0.5767 0.7760
0.7066 4.0 896 0.8331 0.8062 0.7896 0.8062 0.6675 0.6115 0.1018 0.0742 0.8218 0.9070 0.8062 0.6115 0.8062 0.6301 0.7934
0.3654 5.0 1120 1.2300 0.7684 0.7699 0.7684 0.6085 0.6131 0.1066 0.0913 0.8542 0.9056 0.7684 0.6131 0.7684 0.5896 0.7611
0.3654 6.0 1344 1.0698 0.8129 0.7940 0.8129 0.6864 0.6153 0.0957 0.0712 0.8406 0.9134 0.8129 0.6153 0.8129 0.6300 0.7972
0.2047 7.0 1568 1.3300 0.7884 0.7960 0.7884 0.6412 0.5959 0.1044 0.0821 0.8421 0.9076 0.7884 0.5959 0.7884 0.6141 0.7892
0.2047 8.0 1792 1.3870 0.8107 0.7861 0.8107 0.6467 0.6063 0.0983 0.0722 0.8318 0.9106 0.8107 0.6063 0.8107 0.6163 0.7947
0.0795 9.0 2016 1.5031 0.7951 0.7719 0.7951 0.6275 0.5969 0.1040 0.0791 0.8320 0.9068 0.7951 0.5969 0.7951 0.6036 0.7803
0.0795 10.0 2240 1.6304 0.7728 0.7796 0.7728 0.6171 0.6233 0.1060 0.0892 0.8561 0.9072 0.7728 0.6233 0.7728 0.6196 0.7759
0.0795 11.0 2464 1.6553 0.8040 0.7802 0.8040 0.6405 0.6047 0.1003 0.0751 0.8333 0.9093 0.8040 0.6047 0.8040 0.6097 0.7884
0.0309 12.0 2688 1.6668 0.7996 0.7776 0.7996 0.6247 0.6084 0.0999 0.0771 0.8431 0.9107 0.7996 0.6084 0.7996 0.6073 0.7861
0.0309 13.0 2912 1.7548 0.8040 0.7724 0.8040 0.6059 0.5847 0.1030 0.0751 0.8216 0.9064 0.8040 0.5847 0.8040 0.5912 0.7846
0.0225 14.0 3136 1.6691 0.8107 0.7736 0.8107 0.5965 0.6044 0.0974 0.0722 0.8336 0.9111 0.8107 0.6044 0.8107 0.5998 0.7909
0.0225 15.0 3360 1.8751 0.8040 0.7897 0.8040 0.6516 0.6081 0.1007 0.0751 0.8322 0.9091 0.8040 0.6081 0.8040 0.6251 0.7939
0.0048 16.0 3584 1.8402 0.8085 0.7983 0.8085 0.6608 0.6429 0.0935 0.0732 0.8548 0.9158 0.8085 0.6429 0.8085 0.6478 0.8018
0.0048 17.0 3808 1.9124 0.7951 0.7871 0.7951 0.6331 0.6237 0.1001 0.0791 0.8456 0.9102 0.7951 0.6237 0.7951 0.6250 0.7891
0.0069 18.0 4032 1.8857 0.7973 0.7794 0.7973 0.6268 0.5972 0.1048 0.0781 0.8240 0.9053 0.7973 0.5972 0.7973 0.6062 0.7847
0.0069 19.0 4256 1.9492 0.8062 0.7813 0.8062 0.6467 0.6015 0.1006 0.0742 0.8281 0.9086 0.8062 0.6015 0.8062 0.6107 0.7895
0.0069 20.0 4480 1.8994 0.8085 0.7849 0.8085 0.6417 0.6067 0.0988 0.0732 0.8322 0.9102 0.8085 0.6067 0.8085 0.6144 0.7932
0.0034 21.0 4704 1.9819 0.8040 0.7898 0.8040 0.6748 0.6325 0.0976 0.0751 0.8439 0.9120 0.8040 0.6325 0.8040 0.6429 0.7942
0.0034 22.0 4928 2.0181 0.8062 0.7880 0.8062 0.6736 0.6204 0.0977 0.0742 0.8408 0.9118 0.8062 0.6204 0.8062 0.6293 0.7930
0.0001 23.0 5152 2.0305 0.8062 0.7880 0.8062 0.6736 0.6204 0.0977 0.0742 0.8408 0.9118 0.8062 0.6204 0.8062 0.6293 0.7930
0.0001 24.0 5376 2.0249 0.8040 0.7801 0.8040 0.6448 0.6004 0.1019 0.0751 0.8256 0.9074 0.8040 0.6004 0.8040 0.6092 0.7877
0.0 25.0 5600 2.0139 0.8018 0.7848 0.8018 0.6514 0.6226 0.0984 0.0761 0.8438 0.9114 0.8018 0.6226 0.8018 0.6272 0.7908
0.0 26.0 5824 2.0075 0.8040 0.7868 0.8040 0.6586 0.6281 0.0961 0.0751 0.8487 0.9132 0.8040 0.6281 0.8040 0.6305 0.7926
0.0026 27.0 6048 2.0155 0.8040 0.7868 0.8040 0.6586 0.6281 0.0961 0.0751 0.8487 0.9132 0.8040 0.6281 0.8040 0.6305 0.7926
0.0026 28.0 6272 2.0191 0.8040 0.7865 0.8040 0.6586 0.6237 0.0970 0.0751 0.8463 0.9126 0.8040 0.6237 0.8040 0.6283 0.7923
0.0026 29.0 6496 2.0225 0.8040 0.7865 0.8040 0.6586 0.6237 0.0970 0.0751 0.8463 0.9126 0.8040 0.6237 0.8040 0.6283 0.7923
0.0 30.0 6720 2.0343 0.7996 0.7821 0.7996 0.6461 0.6218 0.0984 0.0771 0.8479 0.9119 0.7996 0.6218 0.7996 0.6245 0.7887

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
65.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cite-text-analysis/case-analysis-distilbert-base-cased

Finetuned
(215)
this model