e3_lr2e-05

This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0753
  • Precision: 0.9611
  • Recall: 0.9778
  • F1: 0.9694
  • Accuracy: 0.9817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4195 0.2564 50 0.2315 0.8642 0.8460 0.8550 0.9499
0.2396 0.5128 100 0.1778 0.8971 0.8970 0.8970 0.9517
0.1717 0.7692 150 0.1330 0.9033 0.9323 0.9176 0.9639
0.1249 1.0256 200 0.1090 0.9369 0.9554 0.9460 0.9728
0.0929 1.2821 250 0.1066 0.9397 0.9630 0.9512 0.9739
0.0954 1.5385 300 0.0831 0.9498 0.9670 0.9583 0.9788
0.0858 1.7949 350 0.0844 0.9459 0.9727 0.9591 0.9776
0.0715 2.0513 400 0.0868 0.9512 0.9766 0.9637 0.9796
0.056 2.3077 450 0.0789 0.9616 0.9774 0.9695 0.9818
0.0592 2.5641 500 0.0768 0.9614 0.9783 0.9698 0.9817
0.0607 2.8205 550 0.0753 0.9611 0.9778 0.9694 0.9817

Framework versions

  • Transformers 4.45.0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.20.0
Downloads last month
15
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ciriatico/dodfminer_lite-ner_bertimbau-extrato_contrato

Finetuned
(100)
this model