Edit model card

rubert-base-cased-sentence-finetuned-sent_in_ru

This model is a fine-tuned version of DeepPavlov/rubert-base-cased-sentence on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3503
  • Accuracy: 0.6884
  • F1: 0.6875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 15
  • eval_batch_size: 15
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 441 0.7397 0.6630 0.6530
0.771 2.0 882 0.7143 0.6909 0.6905
0.5449 3.0 1323 0.8385 0.6897 0.6870
0.3795 4.0 1764 0.8851 0.6939 0.6914
0.3059 5.0 2205 1.0728 0.6933 0.6953
0.2673 6.0 2646 1.0673 0.7060 0.7020
0.2358 7.0 3087 1.5200 0.6830 0.6829
0.2069 8.0 3528 1.3439 0.7024 0.7016
0.2069 9.0 3969 1.3545 0.6830 0.6833
0.1724 10.0 4410 1.5591 0.6927 0.6902
0.1525 11.0 4851 1.6425 0.6818 0.6823
0.131 12.0 5292 1.8999 0.6836 0.6775
0.1253 13.0 5733 1.6959 0.6884 0.6877
0.1132 14.0 6174 1.9561 0.6776 0.6803
0.0951 15.0 6615 2.0356 0.6763 0.6754
0.1009 16.0 7056 1.7995 0.6842 0.6741
0.1009 17.0 7497 2.0638 0.6884 0.6811
0.0817 18.0 7938 2.1686 0.6884 0.6859
0.0691 19.0 8379 2.0874 0.6878 0.6889
0.0656 20.0 8820 2.1772 0.6854 0.6817
0.0652 21.0 9261 2.4018 0.6872 0.6896
0.0608 22.0 9702 2.2074 0.6770 0.6656
0.0677 23.0 10143 2.2101 0.6848 0.6793
0.0559 24.0 10584 2.2920 0.6848 0.6835
0.0524 25.0 11025 2.3503 0.6884 0.6875

Framework versions

  • Transformers 4.11.2
  • Pytorch 1.9.0+cu102
  • Datasets 1.12.1
  • Tokenizers 0.10.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.