See axolotl config
axolotl version: 0.5.0
base_model: meta-llama/Llama-3.2-3B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: chrisgru/ro_wiki_chatml_small
type: chat_template
chat_template: llama3
field_messages: conversations
message_field_role: from
message_field_content: value
dataset_prepared_path: /workspace/data/ds_preprocess
val_set_size: 0.01
output_dir: ./data/outputs
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
#adapter: lora
##lora_model_dir:
#lora_r: 64
#lora_alpha: 16
#lora_dropout: 0.05
#lora_target_linear: true
#lora_fan_in_fan_out:
#lora_modules_to_save:
# - embed_tokens
# - lm_head
wandb_project: wiki-llm
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 5e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 20
evals_per_epoch: 10
eval_table_size:
saves_per_epoch: 1
#eval_max_new_tokens: 128
save_total_limit: 2
debug:
#deepspeed:
weight_decay: 0.0
# fsdp:
# - full_shard
# - auto_wrap
# fsdp_config:
# fsdp_limit_all_gathers: true
# fsdp_sync_module_states: true
# fsdp_offload_params: true
# fsdp_use_orig_params: false
# fsdp_cpu_ram_efficient_loading: true
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
# fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
# fsdp_state_dict_type: FULL_STATE_DICT
# fsdp_sharding_strategy: FULL_SHARD
# fsdp_backward_prefetch: BACKWARD_PRE
seed: 1234
hf_use_auth_token: true
hub_strategy: end
hub_model_id: chrisgru/llama-3.2-3B-rowiki
special_tokens:
bos_token: "<|begin_of_text|>"
pad_token: "<|finetune_right_pad_id|>"
llama-3.2-3B-rowiki
This model is a fine-tuned version of meta-llama/Llama-3.2-3B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5161
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 1234
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4683 | 0.0009 | 1 | 1.6826 |
1.7777 | 0.1001 | 117 | 1.6274 |
1.4701 | 0.2003 | 234 | 1.6031 |
1.6591 | 0.3004 | 351 | 1.5815 |
1.664 | 0.4006 | 468 | 1.5587 |
1.5308 | 0.5007 | 585 | 1.5404 |
1.3583 | 0.6009 | 702 | 1.5268 |
1.4297 | 0.7010 | 819 | 1.5198 |
1.7561 | 0.8012 | 936 | 1.5168 |
1.6656 | 0.9013 | 1053 | 1.5161 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.3
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for chrisgru/llama33B
Base model
meta-llama/Llama-3.2-3B