This is a Japanese sentence-LUKE model.
日本語用Sentence-LUKEモデルです。
日本語Sentence-BERTモデルと同一のデータセットと設定で学習しました。
手元の非公開データセットでは、日本語Sentence-BERTモデルと比べて定量的な精度が同等〜0.5pt程度高く、定性的な精度は本モデルの方が高い結果でした。
事前学習済みモデルとしてstudio-ousia/luke-japanese-base-liteを利用させていただきました。
推論の実行にはSentencePieceが必要です(pip install sentencepiece)。
使い方
from transformers import MLukeTokenizer, LukeModel
import torch
class SentenceLukeJapanese:
def __init__(self, model_name_or_path, device=None):
self.tokenizer = MLukeTokenizer.from_pretrained(model_name_or_path)
self.model = LukeModel.from_pretrained(model_name_or_path)
self.model.eval()
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = torch.device(device)
self.model.to(device)
def _mean_pooling(self, model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
@torch.no_grad()
def encode(self, sentences, batch_size=8):
all_embeddings = []
iterator = range(0, len(sentences), batch_size)
for batch_idx in iterator:
batch = sentences[batch_idx:batch_idx + batch_size]
encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest",
truncation=True, return_tensors="pt").to(self.device)
model_output = self.model(**encoded_input)
sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu')
all_embeddings.extend(sentence_embeddings)
return torch.stack(all_embeddings)
MODEL_NAME = "sonoisa/sentence-luke-japanese-base-lite"
model = SentenceLukeJapanese(MODEL_NAME)
sentences = ["暴走したAI", "暴走した人工知能"]
sentence_embeddings = model.encode(sentences, batch_size=8)
print("Sentence embeddings:", sentence_embeddings)
- Downloads last month
- 940
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.