SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-m
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("checkthisout/finetuned_arctic")
# Run inference
sentences = [
'What are the implications of surveillance technologies on the rights and opportunities of underserved communities?',
'limits its focus to both government and commercial use of surveillance technologies when juxtaposed with \nreal-time or subsequent automated analysis and when such systems have a potential for meaningful impact \non individuals’ or communities’ rights, opportunities, or access. \nUNDERSERVED COMMUNITIES: The term “underserved communities” refers to communities that have \nbeen systematically denied a full opportunity to participate in aspects of economic, social, and civic life, as \nexemplified by the list in the preceding definition of “equity.” \n11',
'manage risks associated with activities or business processes common across sectors, such as the use of \nlarge language models (LLMs), cloud-based services, or acquisition. \nThis document defines risks that are novel to or exacerbated by the use of GAI. After introducing and \ndescribing these risks, the document provides a set of suggested actions to help organizations govern, \nmap, measure, and manage these risks. \n \n \n1 EO 14110 defines Generative AI as “the class of AI models that emulate the structure and characteristics of input \ndata in order to generate derived synthetic content. This can include images, videos, audio, text, and other digital',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.805 |
cosine_accuracy@3 | 0.925 |
cosine_accuracy@5 | 0.965 |
cosine_accuracy@10 | 0.97 |
cosine_precision@1 | 0.805 |
cosine_precision@3 | 0.3083 |
cosine_precision@5 | 0.193 |
cosine_precision@10 | 0.097 |
cosine_recall@1 | 0.805 |
cosine_recall@3 | 0.925 |
cosine_recall@5 | 0.965 |
cosine_recall@10 | 0.97 |
cosine_ndcg@10 | 0.8921 |
cosine_mrr@10 | 0.8663 |
cosine_map@100 | 0.868 |
dot_accuracy@1 | 0.805 |
dot_accuracy@3 | 0.925 |
dot_accuracy@5 | 0.965 |
dot_accuracy@10 | 0.97 |
dot_precision@1 | 0.805 |
dot_precision@3 | 0.3083 |
dot_precision@5 | 0.193 |
dot_precision@10 | 0.097 |
dot_recall@1 | 0.805 |
dot_recall@3 | 0.925 |
dot_recall@5 | 0.965 |
dot_recall@10 | 0.97 |
dot_ndcg@10 | 0.8921 |
dot_mrr@10 | 0.8663 |
dot_map@100 | 0.868 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 800 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 800 samples:
sentence_0 sentence_1 type string string details - min: 11 tokens
- mean: 20.1 tokens
- max: 36 tokens
- min: 3 tokens
- mean: 127.42 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 What groups are involved in the processes that require cooperation and collaboration?
processes require the cooperation of and collaboration among industry, civil society, researchers, policymakers,
technologists, and the public.
14Why is collaboration among different sectors important in these processes?
processes require the cooperation of and collaboration among industry, civil society, researchers, policymakers,
technologists, and the public.
14What did the panelists emphasize regarding the regulation of technology before it is built and instituted?
(before the technology is built and instituted). Various panelists also emphasized the importance of regulation
that includes limits to the type and cost of such technologies.
56 - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 20per_device_eval_batch_size
: 20num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 20per_device_eval_batch_size
: 20per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_map@100 |
---|---|---|
1.0 | 40 | 0.8449 |
1.25 | 50 | 0.8586 |
2.0 | 80 | 0.8693 |
2.5 | 100 | 0.8702 |
3.0 | 120 | 0.8703 |
3.75 | 150 | 0.8715 |
4.0 | 160 | 0.8659 |
5.0 | 200 | 0.8680 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for checkthisout/finetuned_arctic
Base model
Snowflake/snowflake-arctic-embed-mEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.805
- Cosine Accuracy@3 on Unknownself-reported0.925
- Cosine Accuracy@5 on Unknownself-reported0.965
- Cosine Accuracy@10 on Unknownself-reported0.970
- Cosine Precision@1 on Unknownself-reported0.805
- Cosine Precision@3 on Unknownself-reported0.308
- Cosine Precision@5 on Unknownself-reported0.193
- Cosine Precision@10 on Unknownself-reported0.097
- Cosine Recall@1 on Unknownself-reported0.805
- Cosine Recall@3 on Unknownself-reported0.925