Edit model card

TokenizerTestingMTSUFall2024SoftwareEngineering

This model is a fine-tuned version of google-t5/t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5198
  • Rouge1: 0.2778
  • Rouge2: 0.2234
  • Rougel: 0.2686
  • Rougelsum: 0.2686
  • Gen Len: 18.9697

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.8333 1.0 12429 1.6354 0.2717 0.2139 0.262 0.262 18.9751
1.7368 2.0 24858 1.5610 0.2763 0.2208 0.267 0.267 18.9735
1.6978 3.0 37287 1.5291 0.2777 0.2227 0.2683 0.2682 18.9699
1.7008 4.0 49716 1.5198 0.2778 0.2234 0.2686 0.2686 18.9697

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
751
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cheaptrix/TokenizerTestingMTSUFall2024SoftwareEngineering

Base model

google-t5/t5-small
Finetuned
(1510)
this model