Vicuna-7B-v1.5-ORPO-SALT

This model is a fine-tuned version of lmsys/vicuna-7b-v1.5 on the dpo_mix_en and the bct_non_cot_dpo_1000 datasets. It achieves the following results on the evaluation set:

  • Loss: 0.9497
  • Rewards/chosen: -0.0879
  • Rewards/rejected: -0.0995
  • Rewards/accuracies: 0.5164
  • Rewards/margins: 0.0116
  • Logps/rejected: -0.9948
  • Logps/chosen: -0.8787
  • Logits/rejected: -0.3581
  • Logits/chosen: -0.3775
  • Sft Loss: 0.8787
  • Odds Ratio Loss: 0.7104

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Sft Loss Odds Ratio Loss
1.0008 0.8082 500 0.9777 -0.0907 -0.1019 0.5055 0.0113 -1.0193 -0.9066 -0.3689 -0.3878 0.9066 0.7105
0.8458 1.6165 1000 0.9560 -0.0885 -0.1000 0.5191 0.0115 -1.0000 -0.8850 -0.3578 -0.3772 0.8850 0.7097
0.9219 2.4247 1500 0.9497 -0.0879 -0.0995 0.5164 0.0116 -0.9948 -0.8787 -0.3581 -0.3775 0.8787 0.7104

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.1
  • Pytorch 2.3.0
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for chchen/Vicuna-7B-v1.5-ORPO-SALT

Adapter
(27)
this model