CuATR-distilbert-LoRA

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6945
  • Accuracy: 0.5652
  • F1: 0.7222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.7007 0.67 1 0.6957 0.5652 0.7222
0.6984 2.0 3 0.6954 0.5652 0.7222
0.7075 2.67 4 0.6952 0.5652 0.7222
0.7 4.0 6 0.6951 0.5652 0.7222
0.6962 4.67 7 0.6950 0.5652 0.7222
0.7003 6.0 9 0.6948 0.5652 0.7222
0.6952 6.67 10 0.6947 0.5652 0.7222
0.7027 8.0 12 0.6946 0.5652 0.7222
0.6995 8.67 13 0.6946 0.5652 0.7222
0.6919 9.33 14 0.6945 0.5652 0.7222

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for chathuru/CuATR-distilbert-LoRA

Finetuned
(7083)
this model