Edit model card

bert-base-uncased-issues-128

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0420
  • Micro f1: 0.6972
  • Macro f1: 0.5740

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Micro f1 Macro f1
0.1542 1.0 404 0.0850 0.0 0.0
0.0853 2.0 808 0.0826 0.0 0.0
0.0828 3.0 1212 0.0776 0.0 0.0
0.0734 4.0 1616 0.0673 0.1735 0.0294
0.061 5.0 2020 0.0597 0.3500 0.0797
0.049 6.0 2424 0.0556 0.4449 0.1180
0.0398 7.0 2828 0.0497 0.5027 0.1615
0.0321 8.0 3232 0.0472 0.5609 0.2498
0.0261 9.0 3636 0.0481 0.5212 0.2442
0.0218 10.0 4040 0.0441 0.6238 0.3251
0.0182 11.0 4444 0.0423 0.6346 0.3880
0.0154 12.0 4848 0.0412 0.6573 0.4223
0.0126 13.0 5252 0.0419 0.6586 0.4570
0.0109 14.0 5656 0.0416 0.6646 0.4813
0.0092 15.0 6060 0.0401 0.6677 0.5041
0.0079 16.0 6464 0.0412 0.6859 0.5323
0.0068 17.0 6868 0.0435 0.6667 0.5372
0.0059 18.0 7272 0.0452 0.6735 0.5617
0.0053 19.0 7676 0.0420 0.6735 0.5590
0.0042 20.0 8080 0.0420 0.6972 0.5740

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1
  • Datasets 2.10.1
  • Tokenizers 0.11.0
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.