File size: 3,026 Bytes
d18969d
 
 
 
 
 
d8e6f6d
86899b2
d8e6f6d
86899b2
d18969d
 
d8e6f6d
88e8403
 
2f4bb43
054772c
 
d18969d
 
 
 
 
 
 
 
 
 
051564a
07a2ba1
d18969d
 
 
 
 
 
 
 
 
051564a
d18969d
 
 
 
 
 
 
 
 
 
3f2a15a
 
07a2ba1
d18969d
07a2ba1
d18969d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
widget:
- text: 'limon'
  example_title: limon
- text: 'kayseri'
  example_title: kayseri
- text: 'kabak çekirdeği'
  example_title: kabak çekirdeği
- text: 'ne kadar'
  example_title: ne kadar
- text: 'hayatın anlamı'
  example_title: hayatın anlamı
- text: 'saint-joseph'
  example_title: saint-joseph  
- text: 'tatlı olarak'
  example_title: tatlı olarak
- text: 'iklim değişikliği'
  example_title: iklim değişikliği  
language:
- tr
---
# Model

GPT-2 Türkçe Modeli

### Model Açıklaması

GPT-2 Türkçe Modeli, Türkçe diline özelleştirilmiş olan GPT-2 mimarisi temel alınarak oluşturulmuş bir dil modelidir. Belirli bir başlangıç metni temel alarak insana benzer metinler üretme yeteneğine sahiptir ve geniş bir Türkçe metin veri kümesi üzerinde eğitilmiştir.
Modelin eğitimi için 900 milyon karakterli Vikipedi seti kullanılmıştır. Eğitim setindeki cümleler maksimum 48 tokendan (token = kelime kökü ve ekleri) oluşmuştur bu yüzden oluşturacağı cümlelerin boyu sınırlıdır..
Türkçe heceleme yapısına uygun tokenizer kullanılmış ve model 7.5 milyon adımda yaklaşık 12 epoch eğitilmiştir. Eğitim halen devam etmektedir.
Eğitim için 4GB hafızası olan Nvidia Geforce RTX 3050 GPU kullanılmaktadır.

## Model Nasıl Kullanılabilir

```python
# Model ile çıkarım yapmak için örnek kod

from transformers import GPT2Tokenizer, GPT2LMHeadModel

model_name = "cenkersisman/gpt2-turkish-900m"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)

prompt = "okyanusun derinliklerinde bulunan"
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(input_ids, max_length=100, pad_token_id=tokenizer.eos_token_id)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)

```
## Eğitim Süreci Eğrisi

![image/png](https://huggingface.co/cenkersisman/gpt2-turkish-900m/resolve/main/l3.png)

![image/png](https://huggingface.co/cenkersisman/gpt2-turkish-900m/resolve/main/l4.png)
## Sınırlamalar ve Önyargılar
Bu model, bir özyineli dil modeli olarak eğitildi. Bu, temel işlevinin bir metin dizisi alıp bir sonraki belirteci tahmin etmek olduğu anlamına gelir. Dil modelleri bunun dışında birçok görev için yaygın olarak kullanılsa da, bu çalışmayla ilgili birçok bilinmeyen bulunmaktadır.

Model, küfür, açık saçıklık ve aksi davranışlara yol açan metinleri içerdiği bilinen bir veri kümesi üzerinde eğitildi. Kullanım durumunuza bağlı olarak, bu model toplumsal olarak kabul edilemez metinler üretebilir.

Tüm dil modellerinde olduğu gibi, bu modelin belirli bir girişe nasıl yanıt vereceğini önceden tahmin etmek zordur ve uyarı olmaksızın saldırgan içerik ortaya çıkabilir. Sonuçları yayınlamadan önce hem istenmeyen içeriği sansürlemek hem de sonuçların kalitesini iyileştirmek için insanların çıktıları denetlemesini veya filtrelemesi önerilir.