metadata
language:
- en
license: apache-2.0
tags:
- transformers
- unsloth
- llama
- trl
- sft
- peft
base_model: unsloth/llama-3-8b-bnb-4bit
library_name: peft
datasets:
- myzens/alpaca-turkish-combined
Llama 3-8B Turkish Model
This repo contains the fine-tuned model for the Turkish Llama 3 Project and its variants that can be used for different purposes.
The actual trained model is an adapter model of Unsloth's Llama 3-8B quantized model, which is then converted into .gguf format using llama.cpp and into .bin format for vLLM.
You can access the fine-tuning code below.
Example Usage
You can use the adapter model with PEFT.
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
base_model = AutoModelForCausalLM.from_pretrained("unsloth/llama-3-8b-bnb-4bit")
model = PeftModel.from_pretrained(base_model, "myzens/llama3-8b-tr-finetuned")
tokenizer = AutoTokenizer.from_pretrained("myzens/llama3-8b-tr-finetuned")
alpaca_prompt = """
Instruction:
{}
Input:
{}
Response:
{}"""
inputs = tokenizer([
alpaca_prompt.format(
"",
"Ankara'da gezilebilecek 3 yeri söyle ve ne olduklarını kısaca açıkla.",
"",
)], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Output:
`Instruction:
Input: Ankara'da gezilebilecek 3 yeri söyle ve ne olduklarını kısaca açıkla.
Response:
- Anıtkabir - Mustafa Kemal Atatürk'ün mezarı
- Gençlik ve Spor Sarayı - spor etkinliklerinin yapıldığı yer
- Kızılay Meydanı - Ankara'nın merkezinde bulunan bir meydan`
Important Notes
- We recommend you to use an Alpaca Prompt Template or another template, otherwise you can see generations with no meanings or repeating the same sentence constantly.
- Use the model with a CUDA supported GPU.