File size: 1,961 Bytes
d3f870e 7564663 02d1762 d3f870e 02d1762 3fe08a7 443103f d3f870e 72adf1d d3f870e 443103f d3f870e 11822f6 72adf1d 6277244 ca2b2f4 6277244 ca2b2f4 72adf1d ca2b2f4 72adf1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
language:
- en
license: apache-2.0
tags:
- transformers
- unsloth
- llama
- trl
- sft
- peft
base_model: unsloth/llama-3-8b-bnb-4bit
library_name: peft
datasets:
- myzens/alpaca-turkish-combined
---
# Llama 3-8B Turkish Model
This repo contains the fine-tuned model for the Turkish Llama 3 Project and its variants that can be used for different purposes.
The actual trained model is an adapter model of [Unsloth's Llama 3-8B quantized model](https://huggingface.co/unsloth/llama-3-8b-bnb-4bit), which is then converted into .gguf format using llama.cpp and into .bin format for vLLM.
You can access the fine-tuning code below.
## Example Usage
You can use the adapter model with PEFT.
```
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
base_model = AutoModelForCausalLM.from_pretrained("unsloth/llama-3-8b-bnb-4bit")
model = PeftModel.from_pretrained(base_model, "myzens/llama3-8b-tr-finetuned")
tokenizer = AutoTokenizer.from_pretrained("myzens/llama3-8b-tr-finetuned")
alpaca_prompt = """
Instruction:
{}
Input:
{}
Response:
{}"""
inputs = tokenizer([
alpaca_prompt.format(
"",
"Ankara'da gezilebilecek 3 yeri söyle ve ne olduklarını kısaca açıkla.",
"",
)], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
Output:
`Instruction:
Input:
Ankara'da gezilebilecek 3 yeri söyle ve ne olduklarını kısaca açıkla.
Response:
1. Anıtkabir - Mustafa Kemal Atatürk'ün mezarı
2. Gençlik ve Spor Sarayı - spor etkinliklerinin yapıldığı yer
3. Kızılay Meydanı - Ankara'nın merkezinde bulunan bir meydan`
### **Important Notes**
- We recommend you to use an Alpaca Prompt Template or another template, otherwise you can see generations with no meanings or repeating the same sentence constantly.
- Use the model with a CUDA supported GPU. |