panels_detection_rtdetr_augmented_consolidated_labels
This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.9166
- Map: 0.3323
- Map 50: 0.469
- Map 75: 0.3645
- Map Small: -1.0
- Map Medium: 0.3095
- Map Large: 0.4094
- Mar 1: 0.459
- Mar 10: 0.6541
- Mar 100: 0.7167
- Mar Small: -1.0
- Mar Medium: 0.5411
- Mar Large: 0.8481
- Map Radar: 0.3744
- Mar 100 Radar: 0.9049
- Map Ship management system: 0.4699
- Mar 100 Ship management system: 0.9591
- Map Ship management system (top): 0.4953
- Mar 100 Ship management system (top): 0.8538
- Map Ecdis: 0.3507
- Mar 100 Ecdis: 0.8893
- Map Visual observation: 0.2942
- Mar 100 Visual observation: 0.8507
- Map Ship management system (table top): 0.5411
- Mar 100 Ship management system (table top): 0.72
- Map Thruster control: 0.1788
- Mar 100 Thruster control: 0.4077
- Map Bow thruster: 0.156
- Mar 100 Bow thruster: 0.4034
- Map Me telegraph: 0.1302
- Mar 100 Me telegraph: 0.4615
- Classification Accuracy: 0.2282
- Classification Accuracy Ship management system: 0.2957
- Classification Accuracy Radar: 0.3297
- Classification Accuracy Visual observation: 0.2203
- Classification Accuracy Ship management system (table top): 0.0
- Classification Accuracy Thruster control: 0.0256
- Classification Accuracy Ship management system (top): 0.3173
- Classification Accuracy Ecdis: 0.1071
- Classification Accuracy Me telegraph: 0.1923
- Classification Accuracy Bow thruster: 0.069
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Radar | Mar 100 Radar | Map Ship management system | Mar 100 Ship management system | Map Ship management system (top) | Mar 100 Ship management system (top) | Map Ecdis | Mar 100 Ecdis | Map Visual observation | Mar 100 Visual observation | Map Ship management system (table top) | Mar 100 Ship management system (table top) | Map Thruster control | Mar 100 Thruster control | Map Bow thruster | Mar 100 Bow thruster | Map Me telegraph | Mar 100 Me telegraph | Classification Accuracy | Classification Accuracy Ship management system | Classification Accuracy Radar | Classification Accuracy Visual observation | Classification Accuracy Ship management system (table top) | Classification Accuracy Thruster control | Classification Accuracy Ship management system (top) | Classification Accuracy Ecdis | Classification Accuracy Me telegraph | Classification Accuracy Bow thruster |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
12.1253 | 1.0 | 596 | 9.0098 | 0.4593 | 0.5254 | 0.4993 | -1.0 | 0.3057 | 0.5007 | 0.482 | 0.6769 | 0.6956 | -1.0 | 0.5412 | 0.799 | 0.7974 | 0.9308 | 0.8298 | 0.9366 | 0.5269 | 0.8221 | 0.8698 | 0.9736 | 0.581 | 0.9381 | 0.1451 | 0.5571 | 0.3128 | 0.6923 | 0.0391 | 0.2172 | 0.0319 | 0.1923 | 0.2592 | 0.3226 | 0.3027 | 0.3252 | 0.0 | 0.1282 | 0.125 | 0.2857 | 0.0 | 0.0 |
8.3909 | 2.0 | 1192 | 9.0147 | 0.4982 | 0.62 | 0.5363 | -1.0 | 0.3274 | 0.5545 | 0.5187 | 0.677 | 0.6981 | -1.0 | 0.5581 | 0.8106 | 0.7253 | 0.9259 | 0.8928 | 0.957 | 0.7477 | 0.8904 | 0.759 | 0.9264 | 0.5413 | 0.8951 | 0.3766 | 0.6171 | 0.2168 | 0.5308 | 0.0941 | 0.2483 | 0.1301 | 0.2923 | 0.2485 | 0.2796 | 0.2378 | 0.2937 | 0.0 | 0.0256 | 0.4423 | 0.2 | 0.0 | 0.0345 |
7.7341 | 3.0 | 1788 | 9.4848 | 0.5194 | 0.646 | 0.5676 | -1.0 | 0.4074 | 0.6135 | 0.5582 | 0.7028 | 0.7338 | -1.0 | 0.581 | 0.8242 | 0.7274 | 0.933 | 0.8448 | 0.9559 | 0.6896 | 0.8981 | 0.7131 | 0.9379 | 0.3997 | 0.8909 | 0.4943 | 0.6257 | 0.4133 | 0.6385 | 0.2247 | 0.4207 | 0.168 | 0.3038 | 0.2408 | 0.2419 | 0.2054 | 0.2727 | 0.0286 | 0.1795 | 0.2981 | 0.2571 | 0.3077 | 0.1379 |
7.6104 | 4.0 | 2384 | 9.4468 | 0.5195 | 0.6623 | 0.5763 | -1.0 | 0.4071 | 0.5821 | 0.5825 | 0.7279 | 0.7439 | -1.0 | 0.5779 | 0.8443 | 0.6493 | 0.9232 | 0.7005 | 0.9532 | 0.7667 | 0.875 | 0.6255 | 0.9329 | 0.5905 | 0.9101 | 0.4918 | 0.7057 | 0.4777 | 0.6949 | 0.2204 | 0.3655 | 0.1532 | 0.3346 | 0.2447 | 0.1882 | 0.2378 | 0.3811 | 0.0 | 0.1026 | 0.2981 | 0.1643 | 0.1923 | 0.0345 |
7.0844 | 5.0 | 2980 | 9.9452 | 0.5275 | 0.6615 | 0.5679 | -1.0 | 0.4377 | 0.632 | 0.5795 | 0.7384 | 0.7581 | -1.0 | 0.6037 | 0.8954 | 0.7249 | 0.9405 | 0.7164 | 0.9457 | 0.5673 | 0.8663 | 0.7485 | 0.9436 | 0.6044 | 0.9392 | 0.604 | 0.7086 | 0.3434 | 0.6256 | 0.2514 | 0.4379 | 0.1874 | 0.4154 | 0.2097 | 0.0968 | 0.2703 | 0.3252 | 0.0 | 0.0513 | 0.2019 | 0.2071 | 0.0769 | 0.0345 |
6.6803 | 6.0 | 3576 | 10.6003 | 0.4635 | 0.5961 | 0.5036 | -1.0 | 0.4156 | 0.5591 | 0.5808 | 0.7419 | 0.7748 | -1.0 | 0.6358 | 0.8924 | 0.5136 | 0.947 | 0.6338 | 0.9629 | 0.69 | 0.8904 | 0.6112 | 0.9407 | 0.3836 | 0.9066 | 0.6059 | 0.8029 | 0.3949 | 0.6513 | 0.1625 | 0.4483 | 0.1762 | 0.4231 | 0.2388 | 0.1774 | 0.427 | 0.2133 | 0.0286 | 0.0256 | 0.4038 | 0.1786 | 0.1538 | 0.0 |
6.4981 | 7.0 | 4172 | 11.3455 | 0.3103 | 0.4335 | 0.3555 | -1.0 | 0.333 | 0.3612 | 0.4548 | 0.6611 | 0.7139 | -1.0 | 0.567 | 0.8517 | 0.3993 | 0.8973 | 0.4322 | 0.9489 | 0.4434 | 0.8394 | 0.3526 | 0.9057 | 0.2785 | 0.8479 | 0.4733 | 0.7143 | 0.1746 | 0.5385 | 0.0939 | 0.3138 | 0.1448 | 0.4192 | 0.2311 | 0.2581 | 0.3622 | 0.2028 | 0.0 | 0.0256 | 0.2788 | 0.1857 | 0.1923 | 0.1379 |
6.1177 | 8.0 | 4768 | 11.4110 | 0.3684 | 0.5032 | 0.4021 | -1.0 | 0.3369 | 0.4837 | 0.4834 | 0.6829 | 0.7346 | -1.0 | 0.5818 | 0.8732 | 0.4138 | 0.9162 | 0.5081 | 0.9651 | 0.5771 | 0.8721 | 0.4373 | 0.9307 | 0.3317 | 0.8734 | 0.5112 | 0.6886 | 0.2239 | 0.5128 | 0.1511 | 0.3793 | 0.1609 | 0.4731 | 0.2437 | 0.3172 | 0.3568 | 0.2378 | 0.0 | 0.0256 | 0.2212 | 0.2071 | 0.1538 | 0.0345 |
5.9352 | 9.0 | 5364 | 11.8779 | 0.3299 | 0.4592 | 0.3628 | -1.0 | 0.3115 | 0.4131 | 0.4611 | 0.652 | 0.7139 | -1.0 | 0.5542 | 0.8584 | 0.351 | 0.9086 | 0.4956 | 0.9613 | 0.4915 | 0.8462 | 0.3509 | 0.8936 | 0.326 | 0.8598 | 0.4875 | 0.6714 | 0.1978 | 0.4564 | 0.1452 | 0.3621 | 0.1234 | 0.4654 | 0.2262 | 0.328 | 0.3243 | 0.2168 | 0.0286 | 0.0256 | 0.2308 | 0.15 | 0.0769 | 0.0345 |
5.8941 | 10.0 | 5960 | 11.9166 | 0.3323 | 0.469 | 0.3645 | -1.0 | 0.3095 | 0.4094 | 0.459 | 0.6541 | 0.7167 | -1.0 | 0.5411 | 0.8481 | 0.3744 | 0.9049 | 0.4699 | 0.9591 | 0.4953 | 0.8538 | 0.3507 | 0.8893 | 0.2942 | 0.8507 | 0.5411 | 0.72 | 0.1788 | 0.4077 | 0.156 | 0.4034 | 0.1302 | 0.4615 | 0.2282 | 0.2957 | 0.3297 | 0.2203 | 0.0 | 0.0256 | 0.3173 | 0.1071 | 0.1923 | 0.069 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for cems-official/panels_detection_rtdetr_augmented_consolidated_labels
Base model
PekingU/rtdetr_r50vd_coco_o365