panels_detection_rtdetr_augmented_consolidated_labels

This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 11.9166
  • Map: 0.3323
  • Map 50: 0.469
  • Map 75: 0.3645
  • Map Small: -1.0
  • Map Medium: 0.3095
  • Map Large: 0.4094
  • Mar 1: 0.459
  • Mar 10: 0.6541
  • Mar 100: 0.7167
  • Mar Small: -1.0
  • Mar Medium: 0.5411
  • Mar Large: 0.8481
  • Map Radar: 0.3744
  • Mar 100 Radar: 0.9049
  • Map Ship management system: 0.4699
  • Mar 100 Ship management system: 0.9591
  • Map Ship management system (top): 0.4953
  • Mar 100 Ship management system (top): 0.8538
  • Map Ecdis: 0.3507
  • Mar 100 Ecdis: 0.8893
  • Map Visual observation: 0.2942
  • Mar 100 Visual observation: 0.8507
  • Map Ship management system (table top): 0.5411
  • Mar 100 Ship management system (table top): 0.72
  • Map Thruster control: 0.1788
  • Mar 100 Thruster control: 0.4077
  • Map Bow thruster: 0.156
  • Mar 100 Bow thruster: 0.4034
  • Map Me telegraph: 0.1302
  • Mar 100 Me telegraph: 0.4615
  • Classification Accuracy: 0.2282
  • Classification Accuracy Ship management system: 0.2957
  • Classification Accuracy Radar: 0.3297
  • Classification Accuracy Visual observation: 0.2203
  • Classification Accuracy Ship management system (table top): 0.0
  • Classification Accuracy Thruster control: 0.0256
  • Classification Accuracy Ship management system (top): 0.3173
  • Classification Accuracy Ecdis: 0.1071
  • Classification Accuracy Me telegraph: 0.1923
  • Classification Accuracy Bow thruster: 0.069

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Radar Mar 100 Radar Map Ship management system Mar 100 Ship management system Map Ship management system (top) Mar 100 Ship management system (top) Map Ecdis Mar 100 Ecdis Map Visual observation Mar 100 Visual observation Map Ship management system (table top) Mar 100 Ship management system (table top) Map Thruster control Mar 100 Thruster control Map Bow thruster Mar 100 Bow thruster Map Me telegraph Mar 100 Me telegraph Classification Accuracy Classification Accuracy Ship management system Classification Accuracy Radar Classification Accuracy Visual observation Classification Accuracy Ship management system (table top) Classification Accuracy Thruster control Classification Accuracy Ship management system (top) Classification Accuracy Ecdis Classification Accuracy Me telegraph Classification Accuracy Bow thruster
12.1253 1.0 596 9.0098 0.4593 0.5254 0.4993 -1.0 0.3057 0.5007 0.482 0.6769 0.6956 -1.0 0.5412 0.799 0.7974 0.9308 0.8298 0.9366 0.5269 0.8221 0.8698 0.9736 0.581 0.9381 0.1451 0.5571 0.3128 0.6923 0.0391 0.2172 0.0319 0.1923 0.2592 0.3226 0.3027 0.3252 0.0 0.1282 0.125 0.2857 0.0 0.0
8.3909 2.0 1192 9.0147 0.4982 0.62 0.5363 -1.0 0.3274 0.5545 0.5187 0.677 0.6981 -1.0 0.5581 0.8106 0.7253 0.9259 0.8928 0.957 0.7477 0.8904 0.759 0.9264 0.5413 0.8951 0.3766 0.6171 0.2168 0.5308 0.0941 0.2483 0.1301 0.2923 0.2485 0.2796 0.2378 0.2937 0.0 0.0256 0.4423 0.2 0.0 0.0345
7.7341 3.0 1788 9.4848 0.5194 0.646 0.5676 -1.0 0.4074 0.6135 0.5582 0.7028 0.7338 -1.0 0.581 0.8242 0.7274 0.933 0.8448 0.9559 0.6896 0.8981 0.7131 0.9379 0.3997 0.8909 0.4943 0.6257 0.4133 0.6385 0.2247 0.4207 0.168 0.3038 0.2408 0.2419 0.2054 0.2727 0.0286 0.1795 0.2981 0.2571 0.3077 0.1379
7.6104 4.0 2384 9.4468 0.5195 0.6623 0.5763 -1.0 0.4071 0.5821 0.5825 0.7279 0.7439 -1.0 0.5779 0.8443 0.6493 0.9232 0.7005 0.9532 0.7667 0.875 0.6255 0.9329 0.5905 0.9101 0.4918 0.7057 0.4777 0.6949 0.2204 0.3655 0.1532 0.3346 0.2447 0.1882 0.2378 0.3811 0.0 0.1026 0.2981 0.1643 0.1923 0.0345
7.0844 5.0 2980 9.9452 0.5275 0.6615 0.5679 -1.0 0.4377 0.632 0.5795 0.7384 0.7581 -1.0 0.6037 0.8954 0.7249 0.9405 0.7164 0.9457 0.5673 0.8663 0.7485 0.9436 0.6044 0.9392 0.604 0.7086 0.3434 0.6256 0.2514 0.4379 0.1874 0.4154 0.2097 0.0968 0.2703 0.3252 0.0 0.0513 0.2019 0.2071 0.0769 0.0345
6.6803 6.0 3576 10.6003 0.4635 0.5961 0.5036 -1.0 0.4156 0.5591 0.5808 0.7419 0.7748 -1.0 0.6358 0.8924 0.5136 0.947 0.6338 0.9629 0.69 0.8904 0.6112 0.9407 0.3836 0.9066 0.6059 0.8029 0.3949 0.6513 0.1625 0.4483 0.1762 0.4231 0.2388 0.1774 0.427 0.2133 0.0286 0.0256 0.4038 0.1786 0.1538 0.0
6.4981 7.0 4172 11.3455 0.3103 0.4335 0.3555 -1.0 0.333 0.3612 0.4548 0.6611 0.7139 -1.0 0.567 0.8517 0.3993 0.8973 0.4322 0.9489 0.4434 0.8394 0.3526 0.9057 0.2785 0.8479 0.4733 0.7143 0.1746 0.5385 0.0939 0.3138 0.1448 0.4192 0.2311 0.2581 0.3622 0.2028 0.0 0.0256 0.2788 0.1857 0.1923 0.1379
6.1177 8.0 4768 11.4110 0.3684 0.5032 0.4021 -1.0 0.3369 0.4837 0.4834 0.6829 0.7346 -1.0 0.5818 0.8732 0.4138 0.9162 0.5081 0.9651 0.5771 0.8721 0.4373 0.9307 0.3317 0.8734 0.5112 0.6886 0.2239 0.5128 0.1511 0.3793 0.1609 0.4731 0.2437 0.3172 0.3568 0.2378 0.0 0.0256 0.2212 0.2071 0.1538 0.0345
5.9352 9.0 5364 11.8779 0.3299 0.4592 0.3628 -1.0 0.3115 0.4131 0.4611 0.652 0.7139 -1.0 0.5542 0.8584 0.351 0.9086 0.4956 0.9613 0.4915 0.8462 0.3509 0.8936 0.326 0.8598 0.4875 0.6714 0.1978 0.4564 0.1452 0.3621 0.1234 0.4654 0.2262 0.328 0.3243 0.2168 0.0286 0.0256 0.2308 0.15 0.0769 0.0345
5.8941 10.0 5960 11.9166 0.3323 0.469 0.3645 -1.0 0.3095 0.4094 0.459 0.6541 0.7167 -1.0 0.5411 0.8481 0.3744 0.9049 0.4699 0.9591 0.4953 0.8538 0.3507 0.8893 0.2942 0.8507 0.5411 0.72 0.1788 0.4077 0.156 0.4034 0.1302 0.4615 0.2282 0.2957 0.3297 0.2203 0.0 0.0256 0.3173 0.1071 0.1923 0.069

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.20.1
Downloads last month
3
Safetensors
Model size
42.9M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for cems-official/panels_detection_rtdetr_augmented_consolidated_labels

Finetuned
(15)
this model