panels_detection_rtdetr_augmented
This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 13.1458
- Map: 0.2716
- Map 50: 0.3676
- Map 75: 0.2999
- Map Small: -1.0
- Map Medium: 0.339
- Map Large: 0.2963
- Mar 1: 0.4229
- Mar 10: 0.5653
- Mar 100: 0.5922
- Mar Small: -1.0
- Mar Medium: 0.4535
- Mar Large: 0.6263
- Map Radar (small): 0.1167
- Mar 100 Radar (small): 0.6875
- Map Ship management system (small): 0.615
- Mar 100 Ship management system (small): 0.8077
- Map Radar (large): 0.2059
- Mar 100 Radar (large): 0.5217
- Map Ship management system (large): 0.0695
- Mar 100 Ship management system (large): 0.3702
- Map Ship management system (top): 0.5528
- Mar 100 Ship management system (top): 0.8087
- Map Ecdis (large): 0.5496
- Mar 100 Ecdis (large): 0.9193
- Map Visual observation (small): 0.0041
- Mar 100 Visual observation (small): 0.1021
- Map Ecdis (small): 0.2262
- Mar 100 Ecdis (small): 0.9154
- Map Ship management system (table top): 0.3138
- Mar 100 Ship management system (table top): 0.5657
- Map Thruster control: 0.6685
- Mar 100 Thruster control: 0.8256
- Map Visual observation (left): 0.141
- Mar 100 Visual observation (left): 0.7186
- Map Visual observation (mid): 0.1513
- Mar 100 Visual observation (mid): 0.5087
- Map Visual observation (right): 0.0322
- Mar 100 Visual observation (right): 0.2434
- Map Bow thruster: 0.2794
- Mar 100 Bow thruster: 0.5724
- Map Me telegraph: 0.1478
- Mar 100 Me telegraph: 0.3154
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Radar (small) | Mar 100 Radar (small) | Map Ship management system (small) | Mar 100 Ship management system (small) | Map Radar (large) | Mar 100 Radar (large) | Map Ship management system (large) | Mar 100 Ship management system (large) | Map Ship management system (top) | Mar 100 Ship management system (top) | Map Ecdis (large) | Mar 100 Ecdis (large) | Map Visual observation (small) | Mar 100 Visual observation (small) | Map Ecdis (small) | Mar 100 Ecdis (small) | Map Ship management system (table top) | Mar 100 Ship management system (table top) | Map Thruster control | Mar 100 Thruster control | Map Visual observation (left) | Mar 100 Visual observation (left) | Map Visual observation (mid) | Mar 100 Visual observation (mid) | Map Visual observation (right) | Mar 100 Visual observation (right) | Map Bow thruster | Mar 100 Bow thruster | Map Me telegraph | Mar 100 Me telegraph |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8.4513 | 1.0 | 397 | 10.3922 | 0.4094 | 0.514 | 0.4547 | -1.0 | 0.295 | 0.416 | 0.5205 | 0.671 | 0.6975 | -1.0 | 0.5291 | 0.7247 | 0.8486 | 0.9393 | 0.7263 | 0.8862 | 0.7814 | 0.914 | 0.7258 | 0.9289 | 0.7534 | 0.8481 | 0.5119 | 0.9035 | 0.0874 | 0.4833 | 0.0535 | 0.8423 | 0.1808 | 0.3943 | 0.303 | 0.7333 | 0.0478 | 0.7629 | 0.7613 | 0.8965 | 0.0059 | 0.2189 | 0.2985 | 0.4655 | 0.0559 | 0.2462 |
8.1253 | 2.0 | 794 | 10.2868 | 0.493 | 0.6032 | 0.5285 | -1.0 | 0.2459 | 0.5437 | 0.6029 | 0.7667 | 0.7839 | -1.0 | 0.5496 | 0.8401 | 0.8156 | 0.9446 | 0.7535 | 0.9169 | 0.6787 | 0.9171 | 0.7445 | 0.9653 | 0.6818 | 0.8558 | 0.7943 | 0.9561 | 0.0721 | 0.6708 | 0.4244 | 0.9192 | 0.413 | 0.5286 | 0.2675 | 0.5487 | 0.2213 | 0.93 | 0.7938 | 0.9617 | 0.1889 | 0.7434 | 0.3784 | 0.5379 | 0.1678 | 0.3615 |
8.0068 | 3.0 | 1191 | 11.7780 | 0.3272 | 0.4283 | 0.3611 | -1.0 | 0.2647 | 0.3723 | 0.4608 | 0.5782 | 0.5984 | -1.0 | 0.4623 | 0.6375 | 0.1775 | 0.5857 | 0.4329 | 0.6215 | 0.4254 | 0.7295 | 0.3831 | 0.6066 | 0.7085 | 0.8644 | 0.6623 | 0.9061 | 0.0002 | 0.0167 | 0.3838 | 0.8 | 0.3677 | 0.7657 | 0.6698 | 0.7949 | 0.1571 | 0.7557 | 0.1336 | 0.5904 | 0.0578 | 0.2528 | 0.2839 | 0.4862 | 0.064 | 0.2 |
7.6432 | 4.0 | 1588 | 12.1826 | 0.2727 | 0.3822 | 0.3009 | -1.0 | 0.2386 | 0.2872 | 0.4224 | 0.5885 | 0.6213 | -1.0 | 0.3722 | 0.6607 | 0.1547 | 0.7696 | 0.5703 | 0.8585 | 0.2211 | 0.6302 | 0.068 | 0.5826 | 0.6042 | 0.85 | 0.4937 | 0.9105 | 0.0039 | 0.1208 | 0.1132 | 0.9 | 0.5012 | 0.6629 | 0.5743 | 0.6385 | 0.1246 | 0.8343 | 0.0925 | 0.6009 | 0.0052 | 0.1321 | 0.3535 | 0.4862 | 0.21 | 0.3423 |
7.2118 | 5.0 | 1985 | 10.7370 | 0.422 | 0.523 | 0.4602 | -1.0 | 0.4067 | 0.4716 | 0.5546 | 0.7167 | 0.7475 | -1.0 | 0.5951 | 0.8004 | 0.2887 | 0.8054 | 0.6827 | 0.9092 | 0.4278 | 0.8651 | 0.6697 | 0.9248 | 0.729 | 0.8788 | 0.6685 | 0.9649 | 0.0397 | 0.3521 | 0.6509 | 0.9731 | 0.6702 | 0.7971 | 0.5996 | 0.8103 | 0.0968 | 0.8471 | 0.4106 | 0.7904 | 0.0739 | 0.4698 | 0.2219 | 0.5207 | 0.0993 | 0.3038 |
6.8503 | 6.0 | 2382 | 12.6236 | 0.3114 | 0.4103 | 0.3386 | -1.0 | 0.3392 | 0.3656 | 0.4614 | 0.6187 | 0.6432 | -1.0 | 0.5065 | 0.6996 | 0.2113 | 0.7643 | 0.6179 | 0.8831 | 0.1871 | 0.676 | 0.3889 | 0.8248 | 0.5547 | 0.7596 | 0.5439 | 0.9439 | 0.0034 | 0.0812 | 0.3491 | 0.9654 | 0.4448 | 0.6686 | 0.6626 | 0.7692 | 0.1653 | 0.7714 | 0.145 | 0.5113 | 0.0273 | 0.2792 | 0.1843 | 0.4621 | 0.1852 | 0.2885 |
6.5273 | 7.0 | 2779 | 12.6545 | 0.3121 | 0.4213 | 0.3466 | -1.0 | 0.3182 | 0.3481 | 0.4635 | 0.626 | 0.649 | -1.0 | 0.5283 | 0.6854 | 0.176 | 0.8125 | 0.6625 | 0.8738 | 0.2449 | 0.6605 | 0.1453 | 0.562 | 0.5223 | 0.8067 | 0.6556 | 0.9509 | 0.0134 | 0.1937 | 0.3682 | 0.9462 | 0.4038 | 0.6657 | 0.7023 | 0.8333 | 0.1228 | 0.6743 | 0.1926 | 0.6252 | 0.0452 | 0.2925 | 0.2814 | 0.5759 | 0.1451 | 0.2615 |
6.2721 | 8.0 | 3176 | 13.0793 | 0.2565 | 0.3545 | 0.2826 | -1.0 | 0.284 | 0.286 | 0.4092 | 0.552 | 0.5818 | -1.0 | 0.4221 | 0.6166 | 0.1159 | 0.6643 | 0.5472 | 0.7862 | 0.2094 | 0.5047 | 0.0775 | 0.395 | 0.5442 | 0.8135 | 0.5517 | 0.9009 | 0.0029 | 0.0708 | 0.2641 | 0.9269 | 0.2066 | 0.4657 | 0.6357 | 0.8077 | 0.0902 | 0.7071 | 0.1688 | 0.5617 | 0.0261 | 0.2208 | 0.2688 | 0.5483 | 0.1376 | 0.3538 |
6.1623 | 9.0 | 3573 | 13.0892 | 0.2651 | 0.3555 | 0.3017 | -1.0 | 0.3047 | 0.2866 | 0.4149 | 0.5729 | 0.5997 | -1.0 | 0.4693 | 0.6365 | 0.1156 | 0.7214 | 0.5878 | 0.8062 | 0.1642 | 0.5109 | 0.055 | 0.3678 | 0.53 | 0.8269 | 0.5833 | 0.9175 | 0.0049 | 0.1083 | 0.1511 | 0.9269 | 0.34 | 0.5771 | 0.7039 | 0.8744 | 0.11 | 0.7414 | 0.1774 | 0.5478 | 0.0305 | 0.2358 | 0.2654 | 0.5517 | 0.157 | 0.2808 |
6.1458 | 10.0 | 3970 | 13.1458 | 0.2716 | 0.3676 | 0.2999 | -1.0 | 0.339 | 0.2963 | 0.4229 | 0.5653 | 0.5922 | -1.0 | 0.4535 | 0.6263 | 0.1167 | 0.6875 | 0.615 | 0.8077 | 0.2059 | 0.5217 | 0.0695 | 0.3702 | 0.5528 | 0.8087 | 0.5496 | 0.9193 | 0.0041 | 0.1021 | 0.2262 | 0.9154 | 0.3138 | 0.5657 | 0.6685 | 0.8256 | 0.141 | 0.7186 | 0.1513 | 0.5087 | 0.0322 | 0.2434 | 0.2794 | 0.5724 | 0.1478 | 0.3154 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for cems-official/panels_detection_rtdetr_augmented
Base model
PekingU/rtdetr_r50vd_coco_o365