can you share the dataset used to instruction

#1
by g30rv17ys - opened

could we get a notebook to fine-tune the MPT model?

When I get home I’ll send you a script that you can use. You will have to use my modified base model (same model just has support for peft) in order to make it work.

You can refer to these URLs in the meantime:
patched model - peft compatible: cekal/mpt-7b-peft-compatible

How I patched it: Github

Will send you the script in ~ 3 hours

It was finetuned on the classic alpaca gpt4 dataset, you can find that here: https://huggingface.co/datasets/vicgalle/alpaca-gpt4

@cekal thank you for your reply and links.
looking forward to the fine-tuning script.

Here is the script I used to finetune the model. It is the same structure as for LLaMA-LoRA, but I had to adjust a few things to make it run. You can adjust other parameters like cutoff_len etc. based on your needs. If you need anything else, just let me know.

import os
import sys
from typing import List

import fire
import torch
import transformers
from datasets import load_dataset

"""
Unused imports:
import torch.nn as nn
import bitsandbytes as bnb
"""

from peft import (
    LoraConfig,
    get_peft_model,
    get_peft_model_state_dict,
    prepare_model_for_int8_training,
    set_peft_model_state_dict,
)
from transformers import AutoModelForCausalLM, AutoTokenizer

from utils.prompter import Prompter


def train(
    # model/data params
    base_model: str = "cekal/mpt-7b-peft-compatible",  # the only required argument
    data_path: str = "alpaca_data_gpt4.json",
    output_dir: str = "./lora-alpaca",
    # training hyperparams
    batch_size: int = 128,
    micro_batch_size: int = 4,
    num_epochs: int = 1,
    learning_rate: float = 3e-4,
    cutoff_len: int = 2048,
    val_set_size: int = 2000,
    # lora hyperparams
    lora_r: int = 8,
    lora_alpha: int = 16,
    lora_dropout: float = 0.05,
    lora_target_modules: List[str] = [
        "Wqkv",
    ],
    # llm hyperparams
    train_on_inputs: bool = True,  # if False, masks out inputs in loss
    add_eos_token: bool = False,
    group_by_length: bool = False,  # faster, but produces an odd training loss curve
    # wandb params
    wandb_project: str = "",
    wandb_run_name: str = "",
    wandb_watch: str = "",  # options: false | gradients | all
    wandb_log_model: str = "",  # options: false | true
    resume_from_checkpoint: str = None,  # either training checkpoint or final adapter
):
    if int(os.environ.get("LOCAL_RANK", 0)) == 0:
        print(
            f"Training Alpaca-LoRA model with params:\n"
            f"base_model: {base_model}\n"
            f"data_path: {data_path}\n"
            f"output_dir: {output_dir}\n"
            f"batch_size: {batch_size}\n"
            f"micro_batch_size: {micro_batch_size}\n"
            f"num_epochs: {num_epochs}\n"
            f"learning_rate: {learning_rate}\n"
            f"cutoff_len: {cutoff_len}\n"
            f"val_set_size: {val_set_size}\n"
            f"lora_r: {lora_r}\n"
            f"lora_alpha: {lora_alpha}\n"
            f"lora_dropout: {lora_dropout}\n"
            f"lora_target_modules: {lora_target_modules}\n"
            f"train_on_inputs: {train_on_inputs}\n"
            f"add_eos_token: {add_eos_token}\n"
            f"group_by_length: {group_by_length}\n"
            f"wandb_project: {wandb_project}\n"
            f"wandb_run_name: {wandb_run_name}\n"
            f"wandb_watch: {wandb_watch}\n"
            f"wandb_log_model: {wandb_log_model}\n"
            f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
        )
    assert (
        base_model
    ), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
    gradient_accumulation_steps = batch_size // micro_batch_size

    prompter = Prompter

    device_map = "auto"
    world_size = int(os.environ.get("WORLD_SIZE", 1))
    ddp = world_size != 1
    if ddp:
        device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
        gradient_accumulation_steps = gradient_accumulation_steps // world_size

    # Check if parameter passed or if set within environ
    use_wandb = len(wandb_project) > 0 or (
        "WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
    )
    # Only overwrite environ if wandb param passed
    if len(wandb_project) > 0:
        os.environ["WANDB_PROJECT"] = wandb_project
    if len(wandb_watch) > 0:
        os.environ["WANDB_WATCH"] = wandb_watch
    if len(wandb_log_model) > 0:
        os.environ["WANDB_LOG_MODEL"] = wandb_log_model

    model = AutoModelForCausalLM.from_pretrained(
        base_model,
        load_in_8bit=True,
        torch_dtype=torch.float16,
        device_map=device_map,
    )

    tokenizer = AutoTokenizer.from_pretrained(base_model)

    tokenizer.pad_token_id = (
        0  # unk. we want this to be different from the eos token
    )
    tokenizer.padding_side = "left"  # Allow batched inference

    def tokenize(prompt, add_eos_token=True):
        result = tokenizer(
            prompt,
            truncation=True,
            max_length=cutoff_len,
            padding=False,
            return_tensors=None,
        )
        if result["input_ids"]:
            if (
                result["input_ids"][-1] != tokenizer.eos_token_id
                and len(result["input_ids"]) < cutoff_len
                and add_eos_token
            ):
                result["input_ids"].append(tokenizer.eos_token_id)
                result["attention_mask"].append(1)
    
        result["labels"] = result["input_ids"].copy()

        return result


    def generate_and_tokenize_prompt(data_point):
        conversations = data_point["conversations"]
        prompts = []
        responses = []
    
        for conversation in conversations:
            from_role = conversation["from"]
            value = conversation["value"]
    
            if from_role == "human":
                prompts.append("[user]: " + value)
            elif from_role == "gpt":
                responses.append("[AI]: " + value)
    
        full_prompt = "\n".join(prompts + responses)
        tokenized_full_prompt = tokenize(full_prompt)
    
        return tokenized_full_prompt




    model = prepare_model_for_int8_training(model)

    config = LoraConfig(
        r=lora_r,
        lora_alpha=lora_alpha,
        target_modules=lora_target_modules,
        lora_dropout=lora_dropout,
        bias="none",
        task_type="CAUSAL_LM",
    )
    model = get_peft_model(model, config)

    if data_path.endswith(".json") or data_path.endswith(".jsonl"):
        data = load_dataset("json", data_files=data_path)
    else:
        data = load_dataset(data_path)

    if resume_from_checkpoint:
        # Check the available weights and load them
        checkpoint_name = os.path.join(
            resume_from_checkpoint, "pytorch_model.bin"
        )  # Full checkpoint
        if not os.path.exists(checkpoint_name):
            checkpoint_name = os.path.join(
                resume_from_checkpoint, "adapter_model.bin"
            )  # only LoRA model - LoRA config above has to fit
            resume_from_checkpoint = (
                False  # So the trainer won't try loading its state
            )
        # The two files above have a different name depending on how they were saved, but are actually the same.
        if os.path.exists(checkpoint_name):
            print(f"Restarting from {checkpoint_name}")
            adapters_weights = torch.load(checkpoint_name)
            set_peft_model_state_dict(model, adapters_weights)
        else:
            print(f"Checkpoint {checkpoint_name} not found")

    model.print_trainable_parameters()  # Be more transparent about the % of trainable params.

    if val_set_size > 0:
        train_val = data["train"].train_test_split(
            test_size=val_set_size, shuffle=True, seed=42
        )
        train_data = (
            train_val["train"].shuffle().map(generate_and_tokenize_prompt)
        )
        val_data = (
            train_val["test"].shuffle().map(generate_and_tokenize_prompt)
        )
    else:
        train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
        val_data = None

    if not ddp and torch.cuda.device_count() > 1:
        # keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
        model.is_parallelizable = True
        model.model_parallel = True

    trainer = transformers.Trainer(
        model=model,
        train_dataset=train_data,
        eval_dataset=val_data,
        args=transformers.TrainingArguments(
            per_device_train_batch_size=micro_batch_size,
            gradient_accumulation_steps=gradient_accumulation_steps,
            warmup_steps=100,
            num_train_epochs=num_epochs,
            learning_rate=learning_rate,
            fp16=True,
            logging_steps=10,
            optim="adamw_torch",
            evaluation_strategy="steps" if val_set_size > 0 else "no",
            save_strategy="steps",
            eval_steps=200 if val_set_size > 0 else None,
            save_steps=200,
            output_dir=output_dir,
            save_total_limit=3,
            load_best_model_at_end=True if val_set_size > 0 else False,
            ddp_find_unused_parameters=False if ddp else None,
            group_by_length=group_by_length,
            report_to="wandb" if use_wandb else None,
            run_name=wandb_run_name if use_wandb else None,
        ),
        data_collator=transformers.DataCollatorForSeq2Seq(
            tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
        ),
    )
    model.config.use_cache = False

    old_state_dict = model.state_dict
    model.state_dict = (
        lambda self, *_, **__: get_peft_model_state_dict(
            self, old_state_dict()
        )
    ).__get__(model, type(model))

    if torch.__version__ >= "2" and sys.platform != "win32":
        model = torch.compile(model)

    trainer.train(resume_from_checkpoint=resume_from_checkpoint)

    model.save_pretrained(output_dir)

    print(
        "\n If there's a warning about missing keys above, please disregard :)"
    )


if __name__ == "__main__":
    fire.Fire(train)

I just realized I modified the 'def generate_and_tokenize_prompt' to fit my current dataset structure. You may want to use the following script instead to finetune the model on the default alpaca dataset:

import os
import sys
from typing import List

import fire
import torch
import transformers
from datasets import load_dataset

"""
Unused imports:
import torch.nn as nn
import bitsandbytes as bnb
"""

from peft import (
    LoraConfig,
    get_peft_model,
    get_peft_model_state_dict,
    prepare_model_for_int8_training,
    set_peft_model_state_dict,
)
from transformers import LlamaForCausalLM, LlamaTokenizer

from transformers import AutoModelForCausalLM, AutoTokenizer

from utils.prompter import Prompter


def train(
    # model/data params
    base_model: str = "cekal/mpt-7b-peft-compatible",  # the only required argument
    data_path: str = "alpaca_data_gpt4.json",
    output_dir: str = "./lora-alpaca",
    # training hyperparams
    batch_size: int = 128,
    micro_batch_size: int = 4,
    num_epochs: int = 3,
    learning_rate: float = 3e-4,
    cutoff_len: int = 256,
    val_set_size: int = 2000,
    # lora hyperparams
    lora_r: int = 8,
    lora_alpha: int = 16,
    lora_dropout: float = 0.05,
    lora_target_modules: List[str] = ["Wqkv"],
    # lora_target_modules: List[str] = [
    #     "q_proj",
    #     "v_proj",
    # ],
    # llm hyperparams
    train_on_inputs: bool = True,  # if False, masks out inputs in loss
    add_eos_token: bool = False,
    group_by_length: bool = False,  # faster, but produces an odd training loss curve
    # wandb params
    wandb_project: str = "",
    wandb_run_name: str = "",
    wandb_watch: str = "",  # options: false | gradients | all
    wandb_log_model: str = "",  # options: false | true
    resume_from_checkpoint: str = None,  # either training checkpoint or final adapter
    prompt_template_name: str = "alpaca",  # The prompt template to use, will default to alpaca.
):
    if int(os.environ.get("LOCAL_RANK", 0)) == 0:
        print(
            f"Training Alpaca-LoRA model with params:\n"
            f"base_model: {base_model}\n"
            f"data_path: {data_path}\n"
            f"output_dir: {output_dir}\n"
            f"batch_size: {batch_size}\n"
            f"micro_batch_size: {micro_batch_size}\n"
            f"num_epochs: {num_epochs}\n"
            f"learning_rate: {learning_rate}\n"
            f"cutoff_len: {cutoff_len}\n"
            f"val_set_size: {val_set_size}\n"
            f"lora_r: {lora_r}\n"
            f"lora_alpha: {lora_alpha}\n"
            f"lora_dropout: {lora_dropout}\n"
            f"lora_target_modules: {lora_target_modules}\n"
            f"train_on_inputs: {train_on_inputs}\n"
            f"add_eos_token: {add_eos_token}\n"
            f"group_by_length: {group_by_length}\n"
            f"wandb_project: {wandb_project}\n"
            f"wandb_run_name: {wandb_run_name}\n"
            f"wandb_watch: {wandb_watch}\n"
            f"wandb_log_model: {wandb_log_model}\n"
            f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
            f"prompt template: {prompt_template_name}\n"
        )
    assert (
        base_model
    ), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
    gradient_accumulation_steps = batch_size // micro_batch_size

    prompter = Prompter(prompt_template_name)

    device_map = {"": 0}    #"auto" # {"": 0}
    world_size = int(os.environ.get("WORLD_SIZE", 1))
    ddp = world_size != 1
    if ddp:
        device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
        gradient_accumulation_steps = gradient_accumulation_steps // world_size
    print(f"device map: {device_map}")
    # Check if parameter passed or if set within environ
    use_wandb = len(wandb_project) > 0 or (
        "WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
    )
    # Only overwrite environ if wandb param passed
    if len(wandb_project) > 0:
        os.environ["WANDB_PROJECT"] = wandb_project
    if len(wandb_watch) > 0:
        os.environ["WANDB_WATCH"] = wandb_watch
    if len(wandb_log_model) > 0:
        os.environ["WANDB_LOG_MODEL"] = wandb_log_model

    # quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True)
    # config = transformers.AutoConfig.from_pretrained(
    #     'mosaicml/mpt-7b',
    #     trust_remote_code=True
    # )
    # config.attn_config['attn_impl'] = 'triton'

    # model = LlamaForCausalLM.from_pretrained(
    model = AutoModelForCausalLM.from_pretrained(
        # 'mosaicml/mpt-7b',
        base_model,
        trust_remote_code=True,
        # base_model,
        load_in_8bit=True,
        torch_dtype=torch.float16,
        device_map=device_map,
        # quantization_config=quantization_config,
        # load_in_8bit_fp32_cpu_offload=True
    )

    # tokenizer = LlamaTokenizer.from_pretrained(base_model)
    tokenizer = AutoTokenizer.from_pretrained(base_model)

    tokenizer.pad_token_id = (
        0  # unk. we want this to be different from the eos token
    )
    tokenizer.padding_side = "left"  # Allow batched inference

    def tokenize(prompt, add_eos_token=True):
        # there's probably a way to do this with the tokenizer settings
        # but again, gotta move fast
        result = tokenizer(
            prompt,
            truncation=True,
            max_length=cutoff_len,
            padding=False,
            return_tensors=None,
        )
        if (
            result["input_ids"][-1] != tokenizer.eos_token_id
            and len(result["input_ids"]) < cutoff_len
            and add_eos_token
        ):
            result["input_ids"].append(tokenizer.eos_token_id)
            result["attention_mask"].append(1)

        result["labels"] = result["input_ids"].copy()

        return result

    def generate_and_tokenize_prompt(data_point):
        full_prompt = prompter.generate_prompt(
            data_point["instruction"],
            data_point["input"],
            data_point["output"],
        )
        tokenized_full_prompt = tokenize(full_prompt)
        if not train_on_inputs:
            user_prompt = prompter.generate_prompt(
                data_point["instruction"], data_point["input"]
            )
            tokenized_user_prompt = tokenize(
                user_prompt, add_eos_token=add_eos_token
            )
            user_prompt_len = len(tokenized_user_prompt["input_ids"])

            if add_eos_token:
                user_prompt_len -= 1

            tokenized_full_prompt["labels"] = [
                -100
            ] * user_prompt_len + tokenized_full_prompt["labels"][
                user_prompt_len:
            ]  # could be sped up, probably
        return tokenized_full_prompt

    # model = prepare_model_for_int8_training(model)

    config = LoraConfig(
        r=lora_r,
        lora_alpha=lora_alpha,
        target_modules=lora_target_modules,
        lora_dropout=lora_dropout,
        bias="none",
        task_type="CAUSAL_LM",
    )
    model = get_peft_model(model, config)

    if data_path.endswith(".json") or data_path.endswith(".jsonl"):
        data = load_dataset("json", data_files=data_path)
    else:
        data = load_dataset(data_path)

    if resume_from_checkpoint:
        # Check the available weights and load them
        checkpoint_name = os.path.join(
            resume_from_checkpoint, "pytorch_model.bin"
        )  # Full checkpoint
        if not os.path.exists(checkpoint_name):
            checkpoint_name = os.path.join(
                resume_from_checkpoint, "adapter_model.bin"
            )  # only LoRA model - LoRA config above has to fit
            resume_from_checkpoint = (
                False  # So the trainer won't try loading its state
            )
        # The two files above have a different name depending on how they were saved, but are actually the same.
        if os.path.exists(checkpoint_name):
            print(f"Restarting from {checkpoint_name}")
            adapters_weights = torch.load(checkpoint_name)
            set_peft_model_state_dict(model, adapters_weights)
        else:
            print(f"Checkpoint {checkpoint_name} not found")

    model.print_trainable_parameters()  # Be more transparent about the % of trainable params.

    if val_set_size > 0:
        train_val = data["train"].train_test_split(
            test_size=val_set_size, shuffle=True, seed=42
        )
        train_data = (
            train_val["train"].shuffle().map(generate_and_tokenize_prompt)
        )
        val_data = (
            train_val["test"].shuffle().map(generate_and_tokenize_prompt)
        )
    else:
        train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
        val_data = None

    if not ddp and torch.cuda.device_count() > 1:
        # keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
        model.is_parallelizable = True
        model.model_parallel = True

    trainer = transformers.Trainer(
        model=model,
        train_dataset=train_data,
        eval_dataset=val_data,
        args=transformers.TrainingArguments(
            per_device_train_batch_size=micro_batch_size,
            gradient_accumulation_steps=gradient_accumulation_steps,
            warmup_steps=100,
            num_train_epochs=num_epochs,
            learning_rate=learning_rate,
            fp16=True,
            logging_steps=10,
            optim="adamw_torch",
            evaluation_strategy="steps" if val_set_size > 0 else "no",
            save_strategy="steps",
            eval_steps=200 if val_set_size > 0 else None,
            save_steps=200,
            output_dir=output_dir,
            save_total_limit=3,
            load_best_model_at_end=True if val_set_size > 0 else False,
            ddp_find_unused_parameters=False if ddp else None,
            group_by_length=group_by_length,
            report_to="wandb" if use_wandb else None,
            run_name=wandb_run_name if use_wandb else None,
        ),
        data_collator=transformers.DataCollatorForSeq2Seq(
            tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
        ),
    )
    model.config.use_cache = False
#     config = transformers.AutoConfig.from_pretrained(
#   'mosaicml/mpt-7b',
#   trust_remote_code=True
# )
    # model.config.trust_remote_code = True
    # model.config.attn_config['attn_impl'] = 'triton'

    old_state_dict = model.state_dict
    model.state_dict = (
        lambda self, *_, **__: get_peft_model_state_dict(
            self, old_state_dict()
        )
    ).__get__(model, type(model))

    if torch.__version__ >= "2" and sys.platform != "win32":
        model = torch.compile(model)

    trainer.train(resume_from_checkpoint=resume_from_checkpoint)

    model.save_pretrained(output_dir)

    print(
        "\n If there's a warning about missing keys above, please disregard :)"
    )


if __name__ == "__main__":
    fire.Fire(train)

I also forgot to modify the query_key_value parameter in the previous response. This code should now run smoothly.

thank you @cekal for the notebook. I will be testing it out soon.

@cekal any ideas on how you would go about fine-tuning the model on this dataset : https://huggingface.co/datasets/ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered
can you do it directly, or do you have to convert the dataset into any specific format?
would be great to know how the notebook could be edited to maybe train on this dataset. (which line of code)

Sign up or log in to comment