Edit model card

a dialoggpt model trained on french opensubtitles with custom tokenizer

trained with this notebook https://colab.research.google.com/drive/1pfCV3bngAmISNZVfDvBMyEhQKuYw37Rl#scrollTo=AyImj9qZYLRi&uniqifier=3

config from microsoft/DialoGPT-medium dataset generated from 2018 opensubtitle downloaded from opus folowing these guidelines https://github.com/PolyAI-LDN/conversational-datasets/tree/master/opensubtitles with this notebook https://colab.research.google.com/drive/1uyh3vJ9nEjqOHI68VD73qxt4olJzODxi#scrollTo=deaacv4XfLMk

How to use

Now we are ready to try out how the model works as a chatting partner!

import torch
from transformers import AutoTokenizer, AutoModelWithLMHead

tokenizer = AutoTokenizer.from_pretrained("cedpsam/chatbot_fr")

model = AutoModelWithLMHead.from_pretrained("cedpsam/chatbot_fr")

for step in range(6):
    # encode the new user input, add the eos_token and return a tensor in Pytorch
    new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
    # print(new_user_input_ids)

    # append the new user input tokens to the chat history
    bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids

    # generated a response while limiting the total chat history to 1000 tokens, 
    chat_history_ids = model.generate(
        bot_input_ids, max_length=1000,
        pad_token_id=tokenizer.eos_token_id,
        top_p=0.92, top_k = 50
    )
    
    # pretty print last ouput tokens from bot
    print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
Downloads last month
185
Safetensors
Model size
380M params
Tensor type
F32
ยท
U8
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using cedpsam/chatbot_fr 2