SetFit with T-Systems-onsite/cross-en-de-roberta-sentence-transformer

This is a SetFit model that can be used for Text Classification. This SetFit model uses T-Systems-onsite/cross-en-de-roberta-sentence-transformer as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
opposed
  • 'Die geplante flächendeckende Einführung von Wärmepumpen durch das neue Heizungsgesetz stößt auf erhebliche Skepsis, da die Kosten für Hausbesitzer in die Höhe schnellen könnten und die technische Umsetzbarkeit in vielen Altbauten fraglich bleibt. Zudem wird die Frage aufgeworfen, ob der massive staatliche Eingriff in den Heizungsmarkt letztlich zu einer unnötigen Belastung der Bürger führt, ohne einen nennenswerten Effekt auf den globalen CO₂-Ausstoß zu haben.'
  • 'Aufgewacht aus dem Heizungstraum: Trotz geschärfter Gesetzesinitiativen regt sich massiver Skeptizismus gegen die flächendeckende Einführung von Wärmepumpen! Koste es, was es wolle, bevor blind drauflos gepumpt wird, müssen realistische Lösungen her – alles andere heizt nur Ärger auf!'
  • 'Wärmepumpen-Wahnsinn auf dem Vormarsch: Die geplante Gesetzesinitiative zur flächendeckenden Einführung von Wärmepumpen sorgt für erhitzte Gemüter und Skepsis in der Bevölkerung. Kritiker warnen vor explodierenden Kosten und unzureichender Infrastruktur, während die Regierung weiterhin auf stur schaltet.'
neutral
  • 'Die Bundesregierung plant, den Einbau neuer Gas- und Ölheizungen künftig nur noch in Kombination mit Wärmepumpen zu genehmigen. Bevor das Heizungsverbot in Kraft tritt, müssen Städte und Kommunen zunächst einen Wärmeplan vorlegen, was in Berlin frühestens 2026 erwartet wird.'
  • 'Die Bundesregierung plant die Einführung eines sogenannten "Heizungsgesetzes", das den Einbau neuer Gas- und Ölheizungen nur noch in Kombination mit Wärmepumpen erlauben soll. Die Umsetzung dieses Gesetzes soll jedoch erst nach Vorlage eines "Wärmeplans" durch die jeweiligen Städte und Kommunen erfolgen, wodurch eine aufschiebende Wirkung entsteht. In einigen Städten, wie Berlin, könnte das Verbot für den Einbau von Gas- und Ölheizungen ohne Wärmepumpen daher erst 2026 in Kraft treten.'
  • 'In einer jüngsten Gesetzesinitiative wird der Einbau neuer Gas- und Ölheizungen künftig nur noch genehmigt, wenn sie mit Wärmepumpen kombiniert werden. Die Umsetzung des sogenannten "Heizungsgesetzes" soll eine aufschiebende Wirkung haben: Zunächst müssen Städte und Kommunen einen "Wärmeplan" vorlegen, bevor das Heizungsverbot in Kraft tritt. In Berlin könnte dies frühestens im Jahr 2026 der Fall sein.'
supportive
  • 'Die jüngsten Gesetzesinitiativen zur Einführung von Wärmepumpen als Standardheizung haben die Gemüter erhitzt. Kritiker monieren hohe Anschaffungskosten und technische Herausforderungen, während Befürworter den positiven Beitrag dieser Technologie zur Reduzierung der CO2-Emissionen betonen. Angesichts des Klimawandels bleibt die Frage offen, ob diese Maßnahmen ausreichen oder sogar übertrieben sind; sie bilden jedoch einen entscheidenden Schritt in Richtung einer nachhaltigeren Energiepolitik.'
  • 'Die geplante Einführung der Wärmepumpen als Teil des Heizungsgesetzes stößt auf Kritik, insbesondere hinsichtlich der finanziellen Belastung für Eigenheimbesitzer und der technischen Umsetzbarkeit in Altbauten. Dennoch setzt das Vorhaben ein ermutigendes Signal für den Klimaschutz und die notwendige Transformation des Energiesektors hin zu umweltfreundlicheren Technologien.'
  • 'Die geplante flächendeckende Einführung von Wärmepumpen durch das neue Heizungsgesetz stößt auf gemischte Reaktionen: Während Kritiker die hohen Anfangsinvestitionen und die technische Umsetzbarkeit in Frage stellen, wird das Gesetz von vielen als notwendiger Schritt hin zu nachhaltigeren und langfristig kostengünstigeren Heizlösungen begrüßt. Besonders in Regionen, in denen Heizsysteme ohnehin erneuert werden müssen, könnte die Initiative einen wichtigen Anstoß für den Umstieg auf umweltfreundlichere Technologien geben.'

Evaluation

Metrics

Label Accuracy
all 0.6119

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("cbpuschmann/klimacoder_heatpumps_v0.1")
# Run inference
preds = model("14. Juli 2022: Ein Dialogversuch Mitten in der Sommerpause veröffentlichen die beiden für das Heizungsgesetz zuständigen Ministerien, das  Bundeswirtschaftsministerium")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 27 60.7919 195
Label Training Sample Count
neutral 363
opposed 352
supportive 371

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (3, 3)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0000 1 0.1865 -
0.0020 50 0.2414 -
0.0041 100 0.2266 -
0.0061 150 0.2097 -
0.0081 200 0.1931 -
0.0102 250 0.1684 -
0.0122 300 0.1417 -
0.0142 350 0.0991 -
0.0163 400 0.0684 -
0.0183 450 0.0349 -
0.0204 500 0.023 -
0.0224 550 0.0137 -
0.0244 600 0.0091 -
0.0265 650 0.0066 -
0.0285 700 0.0046 -
0.0305 750 0.0031 -
0.0326 800 0.0024 -
0.0346 850 0.002 -
0.0366 900 0.0014 -
0.0387 950 0.0013 -
0.0407 1000 0.001 -
0.0427 1050 0.0008 -
0.0448 1100 0.0008 -
0.0468 1150 0.0006 -
0.0488 1200 0.0005 -
0.0509 1250 0.0005 -
0.0529 1300 0.0004 -
0.0550 1350 0.0005 -
0.0570 1400 0.0003 -
0.0590 1450 0.0003 -
0.0611 1500 0.0003 -
0.0631 1550 0.0002 -
0.0651 1600 0.0002 -
0.0672 1650 0.0002 -
0.0692 1700 0.0002 -
0.0712 1750 0.0001 -
0.0733 1800 0.0001 -
0.0753 1850 0.0002 -
0.0773 1900 0.0003 -
0.0794 1950 0.0001 -
0.0814 2000 0.0001 -
0.0834 2050 0.0001 -
0.0855 2100 0.0001 -
0.0875 2150 0.0001 -
0.0896 2200 0.0001 -
0.0916 2250 0.0001 -
0.0936 2300 0.0001 -
0.0957 2350 0.0001 -
0.0977 2400 0.0001 -
0.0997 2450 0.0001 -
0.1018 2500 0.0 -
0.1038 2550 0.0 -
0.1058 2600 0.0 -
0.1079 2650 0.0 -
0.1099 2700 0.0 -
0.1119 2750 0.0 -
0.1140 2800 0.0 -
0.1160 2850 0.0 -
0.1180 2900 0.0 -
0.1201 2950 0.0 -
0.1221 3000 0.0 -
0.1242 3050 0.0 -
0.1262 3100 0.0 -
0.1282 3150 0.0 -
0.1303 3200 0.0 -
0.1323 3250 0.0 -
0.1343 3300 0.0 -
0.1364 3350 0.0 -
0.1384 3400 0.0 -
0.1404 3450 0.0 -
0.1425 3500 0.0 -
0.1445 3550 0.0 -
0.1465 3600 0.0 -
0.1486 3650 0.0 -
0.1506 3700 0.0 -
0.1527 3750 0.0 -
0.1547 3800 0.0 -
0.1567 3850 0.0 -
0.1588 3900 0.0 -
0.1608 3950 0.0 -
0.1628 4000 0.0 -
0.1649 4050 0.0 -
0.1669 4100 0.0 -
0.1689 4150 0.0 -
0.1710 4200 0.0 -
0.1730 4250 0.0 -
0.1750 4300 0.0 -
0.1771 4350 0.0 -
0.1791 4400 0.0 -
0.1811 4450 0.0 -
0.1832 4500 0.0 -
0.1852 4550 0.0 -
0.1873 4600 0.0 -
0.1893 4650 0.0 -
0.1913 4700 0.0 -
0.1934 4750 0.0 -
0.1954 4800 0.0 -
0.1974 4850 0.0 -
0.1995 4900 0.0 -
0.2015 4950 0.0 -
0.2035 5000 0.0 -
0.2056 5050 0.0 -
0.2076 5100 0.0 -
0.2096 5150 0.0 -
0.2117 5200 0.0 -
0.2137 5250 0.0 -
0.2157 5300 0.0 -
0.2178 5350 0.0 -
0.2198 5400 0.0 -
0.2219 5450 0.0 -
0.2239 5500 0.0 -
0.2259 5550 0.0 -
0.2280 5600 0.0 -
0.2300 5650 0.0 -
0.2320 5700 0.0 -
0.2341 5750 0.0 -
0.2361 5800 0.0 -
0.2381 5850 0.0 -
0.2402 5900 0.0 -
0.2422 5950 0.0 -
0.2442 6000 0.0 -
0.2463 6050 0.0 -
0.2483 6100 0.0 -
0.2503 6150 0.0 -
0.2524 6200 0.0 -
0.2544 6250 0.0 -
0.2565 6300 0.0 -
0.2585 6350 0.0 -
0.2605 6400 0.0 -
0.2626 6450 0.0 -
0.2646 6500 0.0 -
0.2666 6550 0.0 -
0.2687 6600 0.0 -
0.2707 6650 0.0 -
0.2727 6700 0.0 -
0.2748 6750 0.0 -
0.2768 6800 0.0 -
0.2788 6850 0.0 -
0.2809 6900 0.0 -
0.2829 6950 0.0 -
0.2849 7000 0.0 -
0.2870 7050 0.0 -
0.2890 7100 0.0 -
0.2911 7150 0.0 -
0.2931 7200 0.0 -
0.2951 7250 0.0001 -
0.2972 7300 0.0 -
0.2992 7350 0.0 -
0.3012 7400 0.0 -
0.3033 7450 0.0 -
0.3053 7500 0.0 -
0.3073 7550 0.0 -
0.3094 7600 0.0 -
0.3114 7650 0.0 -
0.3134 7700 0.0 -
0.3155 7750 0.0 -
0.3175 7800 0.0 -
0.3195 7850 0.0 -
0.3216 7900 0.0 -
0.3236 7950 0.0 -
0.3257 8000 0.0 -
0.3277 8050 0.0 -
0.3297 8100 0.0 -
0.3318 8150 0.0 -
0.3338 8200 0.0 -
0.3358 8250 0.0 -
0.3379 8300 0.0 -
0.3399 8350 0.0 -
0.3419 8400 0.0 -
0.3440 8450 0.0 -
0.3460 8500 0.0 -
0.3480 8550 0.0 -
0.3501 8600 0.0 -
0.3521 8650 0.0 -
0.3541 8700 0.0 -
0.3562 8750 0.0 -
0.3582 8800 0.0 -
0.3603 8850 0.0 -
0.3623 8900 0.0 -
0.3643 8950 0.0 -
0.3664 9000 0.0 -
0.3684 9050 0.0 -
0.3704 9100 0.0 -
0.3725 9150 0.0 -
0.3745 9200 0.0 -
0.3765 9250 0.0 -
0.3786 9300 0.0 -
0.3806 9350 0.0 -
0.3826 9400 0.0 -
0.3847 9450 0.0 -
0.3867 9500 0.0 -
0.3887 9550 0.0 -
0.3908 9600 0.0 -
0.3928 9650 0.0 -
0.3949 9700 0.0 -
0.3969 9750 0.0 -
0.3989 9800 0.0 -
0.4010 9850 0.0 -
0.4030 9900 0.0 -
0.4050 9950 0.0 -
0.4071 10000 0.0 -
0.4091 10050 0.0 -
0.4111 10100 0.0 -
0.4132 10150 0.0 -
0.4152 10200 0.0 -
0.4172 10250 0.0 -
0.4193 10300 0.0 -
0.4213 10350 0.0 -
0.4233 10400 0.0 -
0.4254 10450 0.0 -
0.4274 10500 0.0 -
0.4295 10550 0.0 -
0.4315 10600 0.0 -
0.4335 10650 0.0 -
0.4356 10700 0.0 -
0.4376 10750 0.0 -
0.4396 10800 0.0 -
0.4417 10850 0.0 -
0.4437 10900 0.0 -
0.4457 10950 0.0 -
0.4478 11000 0.0 -
0.4498 11050 0.0 -
0.4518 11100 0.0 -
0.4539 11150 0.0 -
0.4559 11200 0.0 -
0.4580 11250 0.0 -
0.4600 11300 0.0 -
0.4620 11350 0.0 -
0.4641 11400 0.0 -
0.4661 11450 0.0 -
0.4681 11500 0.0 -
0.4702 11550 0.0 -
0.4722 11600 0.0 -
0.4742 11650 0.0 -
0.4763 11700 0.0 -
0.4783 11750 0.0 -
0.4803 11800 0.0 -
0.4824 11850 0.0 -
0.4844 11900 0.0 -
0.4864 11950 0.0 -
0.4885 12000 0.0 -
0.4905 12050 0.0 -
0.4926 12100 0.0 -
0.4946 12150 0.0 -
0.4966 12200 0.0 -
0.4987 12250 0.0 -
0.5007 12300 0.0 -
0.5027 12350 0.0 -
0.5048 12400 0.0 -
0.5068 12450 0.0 -
0.5088 12500 0.0 -
0.5109 12550 0.0 -
0.5129 12600 0.0 -
0.5149 12650 0.0 -
0.5170 12700 0.0 -
0.5190 12750 0.0 -
0.5210 12800 0.0 -
0.5231 12850 0.0 -
0.5251 12900 0.0 -
0.5272 12950 0.0 -
0.5292 13000 0.0 -
0.5312 13050 0.0 -
0.5333 13100 0.0 -
0.5353 13150 0.0006 -
0.5373 13200 0.211 -
0.5394 13250 0.0774 -
0.5414 13300 0.0171 -
0.5434 13350 0.0052 -
0.5455 13400 0.0036 -
0.5475 13450 0.0006 -
0.5495 13500 0.0003 -
0.5516 13550 0.0007 -
0.5536 13600 0.0002 -
0.5556 13650 0.0002 -
0.5577 13700 0.0001 -
0.5597 13750 0.0001 -
0.5618 13800 0.0001 -
0.5638 13850 0.0001 -
0.5658 13900 0.0001 -
0.5679 13950 0.0 -
0.5699 14000 0.0 -
0.5719 14050 0.0 -
0.5740 14100 0.0 -
0.5760 14150 0.0 -
0.5780 14200 0.0 -
0.5801 14250 0.0 -
0.5821 14300 0.0 -
0.5841 14350 0.0 -
0.5862 14400 0.0 -
0.5882 14450 0.0 -
0.5902 14500 0.0 -
0.5923 14550 0.0 -
0.5943 14600 0.0 -
0.5964 14650 0.0 -
0.5984 14700 0.0 -
0.6004 14750 0.0 -
0.6025 14800 0.0 -
0.6045 14850 0.0 -
0.6065 14900 0.0002 -
0.6086 14950 0.0004 -
0.6106 15000 0.0 -
0.6126 15050 0.0 -
0.6147 15100 0.0 -
0.6167 15150 0.0 -
0.6187 15200 0.0 -
0.6208 15250 0.0 -
0.6228 15300 0.0 -
0.6248 15350 0.0 -
0.6269 15400 0.0 -
0.6289 15450 0.0 -
0.6310 15500 0.0 -
0.6330 15550 0.0 -
0.6350 15600 0.0 -
0.6371 15650 0.0 -
0.6391 15700 0.0 -
0.6411 15750 0.0 -
0.6432 15800 0.0 -
0.6452 15850 0.0 -
0.6472 15900 0.0 -
0.6493 15950 0.0 -
0.6513 16000 0.0 -
0.6533 16050 0.0 -
0.6554 16100 0.0 -
0.6574 16150 0.0 -
0.6594 16200 0.0 -
0.6615 16250 0.0 -
0.6635 16300 0.0 -
0.6656 16350 0.0 -
0.6676 16400 0.0 -
0.6696 16450 0.0 -
0.6717 16500 0.0 -
0.6737 16550 0.0 -
0.6757 16600 0.0 -
0.6778 16650 0.0 -
0.6798 16700 0.0 -
0.6818 16750 0.0 -
0.6839 16800 0.0 -
0.6859 16850 0.0 -
0.6879 16900 0.0 -
0.6900 16950 0.0 -
0.6920 17000 0.0 -
0.6940 17050 0.0 -
0.6961 17100 0.0 -
0.6981 17150 0.0 -
0.7002 17200 0.0 -
0.7022 17250 0.0 -
0.7042 17300 0.0 -
0.7063 17350 0.0 -
0.7083 17400 0.0 -
0.7103 17450 0.0 -
0.7124 17500 0.0 -
0.7144 17550 0.0 -
0.7164 17600 0.0 -
0.7185 17650 0.0 -
0.7205 17700 0.0 -
0.7225 17750 0.0 -
0.7246 17800 0.0 -
0.7266 17850 0.0 -
0.7286 17900 0.0 -
0.7307 17950 0.0 -
0.7327 18000 0.0 -
0.7348 18050 0.0 -
0.7368 18100 0.0 -
0.7388 18150 0.0 -
0.7409 18200 0.0 -
0.7429 18250 0.0 -
0.7449 18300 0.0 -
0.7470 18350 0.0 -
0.7490 18400 0.0 -
0.7510 18450 0.0 -
0.7531 18500 0.0 -
0.7551 18550 0.0 -
0.7571 18600 0.0 -
0.7592 18650 0.0 -
0.7612 18700 0.0 -
0.7633 18750 0.0 -
0.7653 18800 0.0 -
0.7673 18850 0.0 -
0.7694 18900 0.0 -
0.7714 18950 0.0 -
0.7734 19000 0.0 -
0.7755 19050 0.0 -
0.7775 19100 0.0 -
0.7795 19150 0.0 -
0.7816 19200 0.0 -
0.7836 19250 0.0 -
0.7856 19300 0.0 -
0.7877 19350 0.0 -
0.7897 19400 0.0 -
0.7917 19450 0.0 -
0.7938 19500 0.0 -
0.7958 19550 0.0 -
0.7979 19600 0.0 -
0.7999 19650 0.0 -
0.8019 19700 0.0 -
0.8040 19750 0.0 -
0.8060 19800 0.0 -
0.8080 19850 0.0 -
0.8101 19900 0.0 -
0.8121 19950 0.0 -
0.8141 20000 0.0 -
0.8162 20050 0.0 -
0.8182 20100 0.0 -
0.8202 20150 0.0 -
0.8223 20200 0.0 -
0.8243 20250 0.0 -
0.8263 20300 0.0 -
0.8284 20350 0.0 -
0.8304 20400 0.0 -
0.8325 20450 0.0 -
0.8345 20500 0.0 -
0.8365 20550 0.0 -
0.8386 20600 0.0 -
0.8406 20650 0.0 -
0.8426 20700 0.0 -
0.8447 20750 0.0 -
0.8467 20800 0.0 -
0.8487 20850 0.0 -
0.8508 20900 0.0 -
0.8528 20950 0.0 -
0.8548 21000 0.0 -
0.8569 21050 0.0 -
0.8589 21100 0.0 -
0.8609 21150 0.0 -
0.8630 21200 0.0 -
0.8650 21250 0.0 -
0.8671 21300 0.0 -
0.8691 21350 0.0 -
0.8711 21400 0.0 -
0.8732 21450 0.0 -
0.8752 21500 0.0 -
0.8772 21550 0.0 -
0.8793 21600 0.0 -
0.8813 21650 0.0 -
0.8833 21700 0.0 -
0.8854 21750 0.0 -
0.8874 21800 0.0 -
0.8894 21850 0.0 -
0.8915 21900 0.0 -
0.8935 21950 0.0 -
0.8955 22000 0.0 -
0.8976 22050 0.0 -
0.8996 22100 0.0 -
0.9017 22150 0.0 -
0.9037 22200 0.0 -
0.9057 22250 0.0 -
0.9078 22300 0.0 -
0.9098 22350 0.0 -
0.9118 22400 0.0 -
0.9139 22450 0.0 -
0.9159 22500 0.0 -
0.9179 22550 0.0 -
0.9200 22600 0.0 -
0.9220 22650 0.0 -
0.9240 22700 0.0 -
0.9261 22750 0.0 -
0.9281 22800 0.0 -
0.9301 22850 0.0 -
0.9322 22900 0.0 -
0.9342 22950 0.0 -
0.9363 23000 0.0 -
0.9383 23050 0.0 -
0.9403 23100 0.0 -
0.9424 23150 0.0 -
0.9444 23200 0.0 -
0.9464 23250 0.0 -
0.9485 23300 0.0 -
0.9505 23350 0.0 -
0.9525 23400 0.0 -
0.9546 23450 0.0 -
0.9566 23500 0.0 -
0.9586 23550 0.0 -
0.9607 23600 0.0 -
0.9627 23650 0.0 -
0.9647 23700 0.0 -
0.9668 23750 0.0 -
0.9688 23800 0.0 -
0.9709 23850 0.0 -
0.9729 23900 0.0 -
0.9749 23950 0.0 -
0.9770 24000 0.0 -
0.9790 24050 0.0 -
0.9810 24100 0.0 -
0.9831 24150 0.0 -
0.9851 24200 0.0 -
0.9871 24250 0.0 -
0.9892 24300 0.0 -
0.9912 24350 0.0 -
0.9932 24400 0.0 -
0.9953 24450 0.0 -
0.9973 24500 0.0 -
0.9993 24550 0.0 -
1.0014 24600 0.0 -
1.0034 24650 0.0 -
1.0055 24700 0.0 -
1.0075 24750 0.0 -
1.0095 24800 0.0 -
1.0116 24850 0.0 -
1.0136 24900 0.0 -
1.0156 24950 0.0 -
1.0177 25000 0.0 -
1.0197 25050 0.0 -
1.0217 25100 0.0 -
1.0238 25150 0.0 -
1.0258 25200 0.0 -
1.0278 25250 0.0 -
1.0299 25300 0.0 -
1.0319 25350 0.0 -
1.0339 25400 0.0 -
1.0360 25450 0.0 -
1.0380 25500 0.0 -
1.0401 25550 0.0 -
1.0421 25600 0.0 -
1.0441 25650 0.0 -
1.0462 25700 0.0 -
1.0482 25750 0.0 -
1.0502 25800 0.0 -
1.0523 25850 0.0 -
1.0543 25900 0.0 -
1.0563 25950 0.0 -
1.0584 26000 0.0 -
1.0604 26050 0.0 -
1.0624 26100 0.0 -
1.0645 26150 0.0 -
1.0665 26200 0.0 -
1.0686 26250 0.0 -
1.0706 26300 0.0 -
1.0726 26350 0.0 -
1.0747 26400 0.0 -
1.0767 26450 0.0 -
1.0787 26500 0.0 -
1.0808 26550 0.0 -
1.0828 26600 0.0 -
1.0848 26650 0.0 -
1.0869 26700 0.0 -
1.0889 26750 0.0 -
1.0909 26800 0.0 -
1.0930 26850 0.0 -
1.0950 26900 0.0 -
1.0970 26950 0.0 -
1.0991 27000 0.0 -
1.1011 27050 0.0 -
1.1032 27100 0.0 -
1.1052 27150 0.0 -
1.1072 27200 0.0 -
1.1093 27250 0.0 -
1.1113 27300 0.0 -
1.1133 27350 0.0 -
1.1154 27400 0.0 -
1.1174 27450 0.0 -
1.1194 27500 0.0 -
1.1215 27550 0.0 -
1.1235 27600 0.0 -
1.1255 27650 0.0 -
1.1276 27700 0.0 -
1.1296 27750 0.0 -
1.1316 27800 0.0 -
1.1337 27850 0.0 -
1.1357 27900 0.0 -
1.1378 27950 0.0 -
1.1398 28000 0.0 -
1.1418 28050 0.0 -
1.1439 28100 0.0 -
1.1459 28150 0.0 -
1.1479 28200 0.0 -
1.1500 28250 0.0 -
1.1520 28300 0.0 -
1.1540 28350 0.0 -
1.1561 28400 0.0 -
1.1581 28450 0.0 -
1.1601 28500 0.0 -
1.1622 28550 0.0 -
1.1642 28600 0.0 -
1.1662 28650 0.0 -
1.1683 28700 0.0 -
1.1703 28750 0.0 -
1.1724 28800 0.0 -
1.1744 28850 0.0 -
1.1764 28900 0.0 -
1.1785 28950 0.0 -
1.1805 29000 0.0 -
1.1825 29050 0.0 -
1.1846 29100 0.0 -
1.1866 29150 0.0 -
1.1886 29200 0.0 -
1.1907 29250 0.0 -
1.1927 29300 0.0 -
1.1947 29350 0.0 -
1.1968 29400 0.0 -
1.1988 29450 0.0 -
1.2008 29500 0.0 -
1.2029 29550 0.0 -
1.2049 29600 0.0 -
1.2070 29650 0.0 -
1.2090 29700 0.0 -
1.2110 29750 0.0 -
1.2131 29800 0.0 -
1.2151 29850 0.0 -
1.2171 29900 0.0 -
1.2192 29950 0.0 -
1.2212 30000 0.0 -
1.2232 30050 0.0 -
1.2253 30100 0.0 -
1.2273 30150 0.0 -
1.2293 30200 0.0 -
1.2314 30250 0.0 -
1.2334 30300 0.0 -
1.2354 30350 0.0 -
1.2375 30400 0.0 -
1.2395 30450 0.0 -
1.2416 30500 0.0 -
1.2436 30550 0.0 -
1.2456 30600 0.0 -
1.2477 30650 0.0 -
1.2497 30700 0.0 -
1.2517 30750 0.0 -
1.2538 30800 0.0 -
1.2558 30850 0.0 -
1.2578 30900 0.0 -
1.2599 30950 0.0 -
1.2619 31000 0.0 -
1.2639 31050 0.0 -
1.2660 31100 0.0 -
1.2680 31150 0.0 -
1.2700 31200 0.0 -
1.2721 31250 0.0 -
1.2741 31300 0.0 -
1.2762 31350 0.0 -
1.2782 31400 0.0 -
1.2802 31450 0.0 -
1.2823 31500 0.0 -
1.2843 31550 0.0 -
1.2863 31600 0.0 -
1.2884 31650 0.0 -
1.2904 31700 0.0 -
1.2924 31750 0.0 -
1.2945 31800 0.0 -
1.2965 31850 0.0 -
1.2985 31900 0.0 -
1.3006 31950 0.0 -
1.3026 32000 0.0 -
1.3046 32050 0.0 -
1.3067 32100 0.0 -
1.3087 32150 0.0 -
1.3108 32200 0.0 -
1.3128 32250 0.0 -
1.3148 32300 0.0 -
1.3169 32350 0.0 -
1.3189 32400 0.0 -
1.3209 32450 0.0 -
1.3230 32500 0.0 -
1.3250 32550 0.0 -
1.3270 32600 0.0 -
1.3291 32650 0.0 -
1.3311 32700 0.0 -
1.3331 32750 0.0 -
1.3352 32800 0.0 -
1.3372 32850 0.0 -
1.3392 32900 0.0 -
1.3413 32950 0.0 -
1.3433 33000 0.0 -
1.3454 33050 0.0 -
1.3474 33100 0.0 -
1.3494 33150 0.0 -
1.3515 33200 0.0 -
1.3535 33250 0.0 -
1.3555 33300 0.0 -
1.3576 33350 0.0 -
1.3596 33400 0.0 -
1.3616 33450 0.0 -
1.3637 33500 0.0 -
1.3657 33550 0.0 -
1.3677 33600 0.0 -
1.3698 33650 0.0 -
1.3718 33700 0.0 -
1.3739 33750 0.0 -
1.3759 33800 0.0 -
1.3779 33850 0.0 -
1.3800 33900 0.0 -
1.3820 33950 0.0 -
1.3840 34000 0.0 -
1.3861 34050 0.0 -
1.3881 34100 0.0 -
1.3901 34150 0.0 -
1.3922 34200 0.0 -
1.3942 34250 0.0 -
1.3962 34300 0.0 -
1.3983 34350 0.0 -
1.4003 34400 0.0 -
1.4023 34450 0.0 -
1.4044 34500 0.0 -
1.4064 34550 0.0 -
1.4085 34600 0.0 -
1.4105 34650 0.0 -
1.4125 34700 0.0 -
1.4146 34750 0.0 -
1.4166 34800 0.0 -
1.4186 34850 0.0 -
1.4207 34900 0.0 -
1.4227 34950 0.0 -
1.4247 35000 0.0 -
1.4268 35050 0.0 -
1.4288 35100 0.0 -
1.4308 35150 0.0 -
1.4329 35200 0.0 -
1.4349 35250 0.0 -
1.4369 35300 0.0002 -
1.4390 35350 0.0051 -
1.4410 35400 0.0047 -
1.4431 35450 0.0003 -
1.4451 35500 0.0008 -
1.4471 35550 0.0 -
1.4492 35600 0.0003 -
1.4512 35650 0.0001 -
1.4532 35700 0.0 -
1.4553 35750 0.0 -
1.4573 35800 0.0 -
1.4593 35850 0.0 -
1.4614 35900 0.0 -
1.4634 35950 0.0 -
1.4654 36000 0.0 -
1.4675 36050 0.0 -
1.4695 36100 0.0 -
1.4715 36150 0.0 -
1.4736 36200 0.0 -
1.4756 36250 0.0 -
1.4777 36300 0.0 -
1.4797 36350 0.0 -
1.4817 36400 0.0 -
1.4838 36450 0.0 -
1.4858 36500 0.0 -
1.4878 36550 0.0 -
1.4899 36600 0.0 -
1.4919 36650 0.0 -
1.4939 36700 0.0 -
1.4960 36750 0.0 -
1.4980 36800 0.0 -
1.5000 36850 0.0 -
1.5021 36900 0.0 -
1.5041 36950 0.0 -
1.5061 37000 0.0 -
1.5082 37050 0.0 -
1.5102 37100 0.0 -
1.5123 37150 0.0 -
1.5143 37200 0.0 -
1.5163 37250 0.0 -
1.5184 37300 0.0 -
1.5204 37350 0.0 -
1.5224 37400 0.0 -
1.5245 37450 0.0003 -
1.5265 37500 0.0 -
1.5285 37550 0.0 -
1.5306 37600 0.0 -
1.5326 37650 0.0 -
1.5346 37700 0.0012 -
1.5367 37750 0.0 -
1.5387 37800 0.0 -
1.5407 37850 0.0 -
1.5428 37900 0.0 -
1.5448 37950 0.0 -
1.5469 38000 0.0 -
1.5489 38050 0.0 -
1.5509 38100 0.0 -
1.5530 38150 0.0 -
1.5550 38200 0.0 -
1.5570 38250 0.0 -
1.5591 38300 0.0 -
1.5611 38350 0.0 -
1.5631 38400 0.0 -
1.5652 38450 0.0 -
1.5672 38500 0.0 -
1.5692 38550 0.0 -
1.5713 38600 0.0 -
1.5733 38650 0.0 -
1.5753 38700 0.0 -
1.5774 38750 0.0 -
1.5794 38800 0.0 -
1.5815 38850 0.0 -
1.5835 38900 0.0 -
1.5855 38950 0.0 -
1.5876 39000 0.0 -
1.5896 39050 0.0 -
1.5916 39100 0.0 -
1.5937 39150 0.0 -
1.5957 39200 0.0 -
1.5977 39250 0.0 -
1.5998 39300 0.0 -
1.6018 39350 0.0 -
1.6038 39400 0.0 -
1.6059 39450 0.0 -
1.6079 39500 0.0 -
1.6099 39550 0.0 -
1.6120 39600 0.0 -
1.6140 39650 0.0 -
1.6161 39700 0.0 -
1.6181 39750 0.0 -
1.6201 39800 0.0 -
1.6222 39850 0.0 -
1.6242 39900 0.0 -
1.6262 39950 0.0 -
1.6283 40000 0.0 -
1.6303 40050 0.0 -
1.6323 40100 0.0 -
1.6344 40150 0.0 -
1.6364 40200 0.0 -
1.6384 40250 0.0 -
1.6405 40300 0.0 -
1.6425 40350 0.0 -
1.6445 40400 0.0 -
1.6466 40450 0.0 -
1.6486 40500 0.0 -
1.6507 40550 0.0 -
1.6527 40600 0.0 -
1.6547 40650 0.0 -
1.6568 40700 0.0 -
1.6588 40750 0.0 -
1.6608 40800 0.0 -
1.6629 40850 0.0 -
1.6649 40900 0.0 -
1.6669 40950 0.0 -
1.6690 41000 0.0 -
1.6710 41050 0.0 -
1.6730 41100 0.0 -
1.6751 41150 0.0 -
1.6771 41200 0.0 -
1.6792 41250 0.0 -
1.6812 41300 0.0 -
1.6832 41350 0.0 -
1.6853 41400 0.0 -
1.6873 41450 0.0 -
1.6893 41500 0.0 -
1.6914 41550 0.0 -
1.6934 41600 0.0 -
1.6954 41650 0.0 -
1.6975 41700 0.0 -
1.6995 41750 0.0 -
1.7015 41800 0.0 -
1.7036 41850 0.0 -
1.7056 41900 0.0 -
1.7076 41950 0.0 -
1.7097 42000 0.0 -
1.7117 42050 0.0 -
1.7138 42100 0.0 -
1.7158 42150 0.0 -
1.7178 42200 0.0 -
1.7199 42250 0.0 -
1.7219 42300 0.0 -
1.7239 42350 0.0 -
1.7260 42400 0.0 -
1.7280 42450 0.0 -
1.7300 42500 0.0 -
1.7321 42550 0.0 -
1.7341 42600 0.0 -
1.7361 42650 0.0 -
1.7382 42700 0.0 -
1.7402 42750 0.0 -
1.7422 42800 0.0 -
1.7443 42850 0.0 -
1.7463 42900 0.0 -
1.7484 42950 0.0 -
1.7504 43000 0.0 -
1.7524 43050 0.0 -
1.7545 43100 0.0 -
1.7565 43150 0.0 -
1.7585 43200 0.0 -
1.7606 43250 0.0 -
1.7626 43300 0.0 -
1.7646 43350 0.0 -
1.7667 43400 0.0 -
1.7687 43450 0.0 -
1.7707 43500 0.0 -
1.7728 43550 0.0 -
1.7748 43600 0.0 -
1.7768 43650 0.0 -
1.7789 43700 0.0 -
1.7809 43750 0.0 -
1.7830 43800 0.0 -
1.7850 43850 0.0 -
1.7870 43900 0.0 -
1.7891 43950 0.0 -
1.7911 44000 0.0 -
1.7931 44050 0.0 -
1.7952 44100 0.0 -
1.7972 44150 0.0 -
1.7992 44200 0.0 -
1.8013 44250 0.0 -
1.8033 44300 0.0 -
1.8053 44350 0.0 -
1.8074 44400 0.0 -
1.8094 44450 0.0 -
1.8114 44500 0.0 -
1.8135 44550 0.0 -
1.8155 44600 0.0 -
1.8176 44650 0.0 -
1.8196 44700 0.0 -
1.8216 44750 0.0 -
1.8237 44800 0.0 -
1.8257 44850 0.0 -
1.8277 44900 0.0 -
1.8298 44950 0.0 -
1.8318 45000 0.0 -
1.8338 45050 0.0 -
1.8359 45100 0.0 -
1.8379 45150 0.0 -
1.8399 45200 0.0 -
1.8420 45250 0.0 -
1.8440 45300 0.0 -
1.8460 45350 0.0 -
1.8481 45400 0.0 -
1.8501 45450 0.0 -
1.8522 45500 0.0 -
1.8542 45550 0.0 -
1.8562 45600 0.0 -
1.8583 45650 0.0 -
1.8603 45700 0.0 -
1.8623 45750 0.0 -
1.8644 45800 0.0 -
1.8664 45850 0.0 -
1.8684 45900 0.0 -
1.8705 45950 0.0 -
1.8725 46000 0.0 -
1.8745 46050 0.0 -
1.8766 46100 0.0 -
1.8786 46150 0.0 -
1.8806 46200 0.0 -
1.8827 46250 0.0 -
1.8847 46300 0.0 -
1.8868 46350 0.0 -
1.8888 46400 0.0 -
1.8908 46450 0.0 -
1.8929 46500 0.0 -
1.8949 46550 0.0 -
1.8969 46600 0.0 -
1.8990 46650 0.0 -
1.9010 46700 0.0 -
1.9030 46750 0.0 -
1.9051 46800 0.0 -
1.9071 46850 0.0 -
1.9091 46900 0.0 -
1.9112 46950 0.0 -
1.9132 47000 0.0 -
1.9152 47050 0.0 -
1.9173 47100 0.0 -
1.9193 47150 0.0 -
1.9214 47200 0.0 -
1.9234 47250 0.0 -
1.9254 47300 0.0 -
1.9275 47350 0.0 -
1.9295 47400 0.0 -
1.9315 47450 0.0 -
1.9336 47500 0.0 -
1.9356 47550 0.0 -
1.9376 47600 0.0 -
1.9397 47650 0.0 -
1.9417 47700 0.0 -
1.9437 47750 0.0017 -
1.9458 47800 0.0016 -
1.9478 47850 0.0 -
1.9498 47900 0.0 -
1.9519 47950 0.0 -
1.9539 48000 0.0 -
1.9560 48050 0.0 -
1.9580 48100 0.0 -
1.9600 48150 0.0 -
1.9621 48200 0.0 -
1.9641 48250 0.0 -
1.9661 48300 0.0 -
1.9682 48350 0.0 -
1.9702 48400 0.0 -
1.9722 48450 0.0 -
1.9743 48500 0.0 -
1.9763 48550 0.0 -
1.9783 48600 0.0 -
1.9804 48650 0.0 -
1.9824 48700 0.0 -
1.9845 48750 0.0 -
1.9865 48800 0.0 -
1.9885 48850 0.0 -
1.9906 48900 0.0 -
1.9926 48950 0.0 -
1.9946 49000 0.0 -
1.9967 49050 0.0 -
1.9987 49100 0.0 -
2.0007 49150 0.0 -
2.0028 49200 0.0 -
2.0048 49250 0.0 -
2.0068 49300 0.0 -
2.0089 49350 0.0 -
2.0109 49400 0.0 -
2.0129 49450 0.0 -
2.0150 49500 0.0 -
2.0170 49550 0.0 -
2.0191 49600 0.0 -
2.0211 49650 0.0 -
2.0231 49700 0.0 -
2.0252 49750 0.0 -
2.0272 49800 0.0 -
2.0292 49850 0.0 -
2.0313 49900 0.0 -
2.0333 49950 0.0 -
2.0353 50000 0.0 -
2.0374 50050 0.0 -
2.0394 50100 0.0 -
2.0414 50150 0.0 -
2.0435 50200 0.0 -
2.0455 50250 0.0 -
2.0475 50300 0.0 -
2.0496 50350 0.0 -
2.0516 50400 0.0 -
2.0537 50450 0.0 -
2.0557 50500 0.0 -
2.0577 50550 0.0 -
2.0598 50600 0.0 -
2.0618 50650 0.0 -
2.0638 50700 0.0 -
2.0659 50750 0.0 -
2.0679 50800 0.0 -
2.0699 50850 0.0 -
2.0720 50900 0.0 -
2.0740 50950 0.0 -
2.0760 51000 0.0 -
2.0781 51050 0.0 -
2.0801 51100 0.0 -
2.0821 51150 0.0 -
2.0842 51200 0.0 -
2.0862 51250 0.0 -
2.0883 51300 0.0 -
2.0903 51350 0.0 -
2.0923 51400 0.0 -
2.0944 51450 0.0 -
2.0964 51500 0.0 -
2.0984 51550 0.0 -
2.1005 51600 0.0 -
2.1025 51650 0.0 -
2.1045 51700 0.0 -
2.1066 51750 0.0 -
2.1086 51800 0.0 -
2.1106 51850 0.0 -
2.1127 51900 0.0 -
2.1147 51950 0.0 -
2.1167 52000 0.0 -
2.1188 52050 0.0 -
2.1208 52100 0.0 -
2.1229 52150 0.0 -
2.1249 52200 0.0 -
2.1269 52250 0.0 -
2.1290 52300 0.0 -
2.1310 52350 0.0 -
2.1330 52400 0.0 -
2.1351 52450 0.0 -
2.1371 52500 0.0 -
2.1391 52550 0.0 -
2.1412 52600 0.0 -
2.1432 52650 0.0 -
2.1452 52700 0.0 -
2.1473 52750 0.0 -
2.1493 52800 0.0 -
2.1513 52850 0.0 -
2.1534 52900 0.0 -
2.1554 52950 0.0 -
2.1575 53000 0.0 -
2.1595 53050 0.0 -
2.1615 53100 0.0 -
2.1636 53150 0.0 -
2.1656 53200 0.0 -
2.1676 53250 0.0 -
2.1697 53300 0.0 -
2.1717 53350 0.0 -
2.1737 53400 0.0 -
2.1758 53450 0.0 -
2.1778 53500 0.0 -
2.1798 53550 0.0 -
2.1819 53600 0.0 -
2.1839 53650 0.0 -
2.1859 53700 0.0 -
2.1880 53750 0.0 -
2.1900 53800 0.0 -
2.1921 53850 0.0 -
2.1941 53900 0.0 -
2.1961 53950 0.0 -
2.1982 54000 0.0 -
2.2002 54050 0.0 -
2.2022 54100 0.0 -
2.2043 54150 0.0 -
2.2063 54200 0.0 -
2.2083 54250 0.0 -
2.2104 54300 0.0 -
2.2124 54350 0.0 -
2.2144 54400 0.0 -
2.2165 54450 0.0 -
2.2185 54500 0.0 -
2.2205 54550 0.0 -
2.2226 54600 0.0 -
2.2246 54650 0.0 -
2.2267 54700 0.0 -
2.2287 54750 0.0 -
2.2307 54800 0.0 -
2.2328 54850 0.0 -
2.2348 54900 0.0 -
2.2368 54950 0.0 -
2.2389 55000 0.0 -
2.2409 55050 0.0 -
2.2429 55100 0.0 -
2.2450 55150 0.0 -
2.2470 55200 0.0 -
2.2490 55250 0.0 -
2.2511 55300 0.0 -
2.2531 55350 0.0 -
2.2551 55400 0.0 -
2.2572 55450 0.0 -
2.2592 55500 0.0 -
2.2613 55550 0.0 -
2.2633 55600 0.0 -
2.2653 55650 0.0 -
2.2674 55700 0.0 -
2.2694 55750 0.0 -
2.2714 55800 0.0 -
2.2735 55850 0.0 -
2.2755 55900 0.0 -
2.2775 55950 0.0 -
2.2796 56000 0.0 -
2.2816 56050 0.0 -
2.2836 56100 0.0 -
2.2857 56150 0.0 -
2.2877 56200 0.0 -
2.2898 56250 0.0 -
2.2918 56300 0.0 -
2.2938 56350 0.0 -
2.2959 56400 0.0 -
2.2979 56450 0.0 -
2.2999 56500 0.0 -
2.3020 56550 0.0 -
2.3040 56600 0.0 -
2.3060 56650 0.0 -
2.3081 56700 0.0 -
2.3101 56750 0.0 -
2.3121 56800 0.0 -
2.3142 56850 0.0 -
2.3162 56900 0.0 -
2.3182 56950 0.0 -
2.3203 57000 0.0 -
2.3223 57050 0.0 -
2.3244 57100 0.0 -
2.3264 57150 0.0 -
2.3284 57200 0.0 -
2.3305 57250 0.0 -
2.3325 57300 0.0 -
2.3345 57350 0.0 -
2.3366 57400 0.0 -
2.3386 57450 0.0 -
2.3406 57500 0.0 -
2.3427 57550 0.0 -
2.3447 57600 0.0 -
2.3467 57650 0.0 -
2.3488 57700 0.0 -
2.3508 57750 0.0 -
2.3528 57800 0.0 -
2.3549 57850 0.0 -
2.3569 57900 0.0 -
2.3590 57950 0.0 -
2.3610 58000 0.0 -
2.3630 58050 0.0 -
2.3651 58100 0.0 -
2.3671 58150 0.0 -
2.3691 58200 0.0 -
2.3712 58250 0.0 -
2.3732 58300 0.0 -
2.3752 58350 0.0 -
2.3773 58400 0.0 -
2.3793 58450 0.0 -
2.3813 58500 0.0 -
2.3834 58550 0.0 -
2.3854 58600 0.0 -
2.3874 58650 0.0 -
2.3895 58700 0.0 -
2.3915 58750 0.0 -
2.3936 58800 0.0 -
2.3956 58850 0.0 -
2.3976 58900 0.0 -
2.3997 58950 0.0 -
2.4017 59000 0.0 -
2.4037 59050 0.0 -
2.4058 59100 0.0 -
2.4078 59150 0.0 -
2.4098 59200 0.0 -
2.4119 59250 0.0 -
2.4139 59300 0.0 -
2.4159 59350 0.0 -
2.4180 59400 0.0 -
2.4200 59450 0.0 -
2.4220 59500 0.0 -
2.4241 59550 0.0 -
2.4261 59600 0.0 -
2.4282 59650 0.0 -
2.4302 59700 0.0 -
2.4322 59750 0.0 -
2.4343 59800 0.0 -
2.4363 59850 0.0 -
2.4383 59900 0.0 -
2.4404 59950 0.0 -
2.4424 60000 0.0 -
2.4444 60050 0.0 -
2.4465 60100 0.0 -
2.4485 60150 0.0 -
2.4505 60200 0.0 -
2.4526 60250 0.0 -
2.4546 60300 0.0 -
2.4566 60350 0.0 -
2.4587 60400 0.0 -
2.4607 60450 0.0 -
2.4628 60500 0.0 -
2.4648 60550 0.0 -
2.4668 60600 0.0 -
2.4689 60650 0.0 -
2.4709 60700 0.0 -
2.4729 60750 0.0 -
2.4750 60800 0.0 -
2.4770 60850 0.0 -
2.4790 60900 0.0 -
2.4811 60950 0.0 -
2.4831 61000 0.0 -
2.4851 61050 0.0 -
2.4872 61100 0.0 -
2.4892 61150 0.0 -
2.4912 61200 0.0 -
2.4933 61250 0.0 -
2.4953 61300 0.0 -
2.4974 61350 0.0 -
2.4994 61400 0.0 -
2.5014 61450 0.0 -
2.5035 61500 0.0 -
2.5055 61550 0.0 -
2.5075 61600 0.0 -
2.5096 61650 0.0 -
2.5116 61700 0.0 -
2.5136 61750 0.0 -
2.5157 61800 0.0 -
2.5177 61850 0.0 -
2.5197 61900 0.0 -
2.5218 61950 0.0 -
2.5238 62000 0.0 -
2.5258 62050 0.0 -
2.5279 62100 0.0 -
2.5299 62150 0.0 -
2.5320 62200 0.0 -
2.5340 62250 0.0 -
2.5360 62300 0.0 -
2.5381 62350 0.0 -
2.5401 62400 0.0 -
2.5421 62450 0.0 -
2.5442 62500 0.0 -
2.5462 62550 0.0 -
2.5482 62600 0.0 -
2.5503 62650 0.0 -
2.5523 62700 0.0 -
2.5543 62750 0.0 -
2.5564 62800 0.0 -
2.5584 62850 0.0 -
2.5604 62900 0.0 -
2.5625 62950 0.0 -
2.5645 63000 0.0 -
2.5666 63050 0.0 -
2.5686 63100 0.0 -
2.5706 63150 0.0 -
2.5727 63200 0.0 -
2.5747 63250 0.0 -
2.5767 63300 0.0 -
2.5788 63350 0.0 -
2.5808 63400 0.0 -
2.5828 63450 0.0 -
2.5849 63500 0.0 -
2.5869 63550 0.0 -
2.5889 63600 0.0 -
2.5910 63650 0.0 -
2.5930 63700 0.0 -
2.5951 63750 0.0 -
2.5971 63800 0.0 -
2.5991 63850 0.0 -
2.6012 63900 0.0 -
2.6032 63950 0.0 -
2.6052 64000 0.0 -
2.6073 64050 0.0 -
2.6093 64100 0.0 -
2.6113 64150 0.0 -
2.6134 64200 0.0 -
2.6154 64250 0.0 -
2.6174 64300 0.0 -
2.6195 64350 0.0 -
2.6215 64400 0.0 -
2.6235 64450 0.0 -
2.6256 64500 0.0 -
2.6276 64550 0.0 -
2.6297 64600 0.0 -
2.6317 64650 0.0 -
2.6337 64700 0.0 -
2.6358 64750 0.0 -
2.6378 64800 0.0 -
2.6398 64850 0.0 -
2.6419 64900 0.0 -
2.6439 64950 0.0 -
2.6459 65000 0.0 -
2.6480 65050 0.0 -
2.6500 65100 0.0 -
2.6520 65150 0.0 -
2.6541 65200 0.0 -
2.6561 65250 0.0 -
2.6581 65300 0.0 -
2.6602 65350 0.0 -
2.6622 65400 0.0 -
2.6643 65450 0.0 -
2.6663 65500 0.0 -
2.6683 65550 0.0 -
2.6704 65600 0.0 -
2.6724 65650 0.0 -
2.6744 65700 0.0 -
2.6765 65750 0.0 -
2.6785 65800 0.0 -
2.6805 65850 0.0 -
2.6826 65900 0.0 -
2.6846 65950 0.0 -
2.6866 66000 0.0 -
2.6887 66050 0.0 -
2.6907 66100 0.0 -
2.6927 66150 0.0 -
2.6948 66200 0.0 -
2.6968 66250 0.0 -
2.6989 66300 0.0 -
2.7009 66350 0.0 -
2.7029 66400 0.0 -
2.7050 66450 0.0 -
2.7070 66500 0.0 -
2.7090 66550 0.0 -
2.7111 66600 0.0 -
2.7131 66650 0.0 -
2.7151 66700 0.0 -
2.7172 66750 0.0 -
2.7192 66800 0.0 -
2.7212 66850 0.0 -
2.7233 66900 0.0 -
2.7253 66950 0.0 -
2.7273 67000 0.0 -
2.7294 67050 0.0 -
2.7314 67100 0.0 -
2.7335 67150 0.0 -
2.7355 67200 0.0 -
2.7375 67250 0.0 -
2.7396 67300 0.0 -
2.7416 67350 0.0 -
2.7436 67400 0.0 -
2.7457 67450 0.0 -
2.7477 67500 0.0 -
2.7497 67550 0.0 -
2.7518 67600 0.0 -
2.7538 67650 0.0 -
2.7558 67700 0.0 -
2.7579 67750 0.0 -
2.7599 67800 0.0 -
2.7619 67850 0.0 -
2.7640 67900 0.0 -
2.7660 67950 0.0 -
2.7681 68000 0.0 -
2.7701 68050 0.0 -
2.7721 68100 0.0 -
2.7742 68150 0.0 -
2.7762 68200 0.0 -
2.7782 68250 0.0 -
2.7803 68300 0.0 -
2.7823 68350 0.0 -
2.7843 68400 0.0 -
2.7864 68450 0.0 -
2.7884 68500 0.0 -
2.7904 68550 0.0 -
2.7925 68600 0.0 -
2.7945 68650 0.0 -
2.7965 68700 0.0 -
2.7986 68750 0.0 -
2.8006 68800 0.0 -
2.8027 68850 0.0 -
2.8047 68900 0.0 -
2.8067 68950 0.0 -
2.8088 69000 0.0 -
2.8108 69050 0.0 -
2.8128 69100 0.0 -
2.8149 69150 0.0 -
2.8169 69200 0.0 -
2.8189 69250 0.0 -
2.8210 69300 0.0 -
2.8230 69350 0.0 -
2.8250 69400 0.0 -
2.8271 69450 0.0 -
2.8291 69500 0.0 -
2.8311 69550 0.0 -
2.8332 69600 0.0 -
2.8352 69650 0.0 -
2.8373 69700 0.0 -
2.8393 69750 0.0 -
2.8413 69800 0.0 -
2.8434 69850 0.0 -
2.8454 69900 0.0 -
2.8474 69950 0.0 -
2.8495 70000 0.0 -
2.8515 70050 0.0 -
2.8535 70100 0.0 -
2.8556 70150 0.0 -
2.8576 70200 0.0 -
2.8596 70250 0.0 -
2.8617 70300 0.0 -
2.8637 70350 0.0 -
2.8657 70400 0.0 -
2.8678 70450 0.0 -
2.8698 70500 0.0 -
2.8719 70550 0.0 -
2.8739 70600 0.0 -
2.8759 70650 0.0 -
2.8780 70700 0.0 -
2.8800 70750 0.0 -
2.8820 70800 0.0 -
2.8841 70850 0.0 -
2.8861 70900 0.0 -
2.8881 70950 0.0 -
2.8902 71000 0.0 -
2.8922 71050 0.0 -
2.8942 71100 0.0 -
2.8963 71150 0.0 -
2.8983 71200 0.0 -
2.9004 71250 0.0 -
2.9024 71300 0.0 -
2.9044 71350 0.0 -
2.9065 71400 0.0 -
2.9085 71450 0.0 -
2.9105 71500 0.0 -
2.9126 71550 0.0 -
2.9146 71600 0.0 -
2.9166 71650 0.0 -
2.9187 71700 0.0 -
2.9207 71750 0.0 -
2.9227 71800 0.0 -
2.9248 71850 0.0 -
2.9268 71900 0.0 -
2.9288 71950 0.0 -
2.9309 72000 0.0 -
2.9329 72050 0.0 -
2.9350 72100 0.0 -
2.9370 72150 0.0 -
2.9390 72200 0.0 -
2.9411 72250 0.0 -
2.9431 72300 0.0 -
2.9451 72350 0.0 -
2.9472 72400 0.0 -
2.9492 72450 0.0 -
2.9512 72500 0.0 -
2.9533 72550 0.0 -
2.9553 72600 0.0 -
2.9573 72650 0.0 -
2.9594 72700 0.0 -
2.9614 72750 0.0 -
2.9634 72800 0.0 -
2.9655 72850 0.0 -
2.9675 72900 0.0 -
2.9696 72950 0.0 -
2.9716 73000 0.0 -
2.9736 73050 0.0 -
2.9757 73100 0.0 -
2.9777 73150 0.0 -
2.9797 73200 0.0 -
2.9818 73250 0.0 -
2.9838 73300 0.0 -
2.9858 73350 0.0 -
2.9879 73400 0.0 -
2.9899 73450 0.0 -
2.9919 73500 0.0 -
2.9940 73550 0.0 -
2.9960 73600 0.0 -
2.9980 73650 0.0 -

Framework Versions

  • Python: 3.11.11
  • SetFit: 1.1.1
  • Sentence Transformers: 3.3.1
  • Transformers: 4.42.2
  • PyTorch: 2.5.1+cu121
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
10
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cbpuschmann/klimacoder_heatpumps_v0.1

Evaluation results