File size: 1,090 Bytes
1b6cc64
 
 
aa21dc6
 
 
 
 
 
 
 
 
43f37cd
aa21dc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: apache-2.0
---

# Mistral 7B Instruct

AWQ quantized model.

Dependencies:

```
pip install git+https://github.com/huggingface/transformers.git
pip install git+https://github.com/casper-hansen/AutoAWQ.git
```

Example:

```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

quant_path = "mistral-7b-instruct-v0.1"

# Load model
model = AutoAWQForCausalLM.from_quantized(quant_path, fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)
streamer = TextStreamer(tokenizer, skip_special_tokens=True)

# Convert prompt to tokens
text = "<s>[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
"[INST] Do you have mayonnaise recipes? [/INST]"

tokens = tokenizer(
    text, 
    return_tensors='pt'
).input_ids.cuda()

# Generate output
generation_output = model.generate(
    tokens, 
    streamer=streamer,
    max_new_tokens=512
)
```