Edit model card

categorization-finetuned-20220721-164940-pruned-20220803-123018

This model is a fine-tuned version of carted-nlp/categorization-finetuned-20220721-164940 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5476
  • Accuracy: 0.8558
  • F1: 0.8539

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-06
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 314
  • gradient_accumulation_steps: 6
  • total_train_batch_size: 288
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.3421 0.51 2000 0.4324 0.8871 0.8864
0.3435 1.01 4000 0.4276 0.8885 0.8878
0.327 1.52 6000 0.4300 0.8891 0.8884
0.3299 2.02 8000 0.4266 0.8891 0.8885
0.3217 2.53 10000 0.4303 0.8881 0.8873
0.3347 3.04 12000 0.4291 0.8885 0.8879
0.3307 3.54 14000 0.4334 0.8873 0.8867
0.3537 4.05 16000 0.4340 0.8850 0.8844
0.3659 4.56 18000 0.4426 0.8828 0.8819
0.3933 5.06 20000 0.4485 0.8805 0.8796
0.4117 5.57 22000 0.4553 0.8779 0.8768
0.4501 6.07 24000 0.4734 0.8734 0.8725
0.4848 6.58 26000 0.4895 0.8690 0.8678
0.5182 7.09 28000 0.5137 0.8634 0.8617
0.54 7.59 30000 0.5165 0.8625 0.8610
0.5582 8.1 32000 0.5312 0.8591 0.8572
0.5728 8.61 34000 0.5382 0.8574 0.8556
0.5883 9.11 36000 0.5514 0.8553 0.8534
0.5942 9.62 38000 0.5563 0.8534 0.8512
0.6015 10.12 40000 0.5592 0.8536 0.8516
0.603 10.63 42000 0.5585 0.8533 0.8513
0.5972 11.14 44000 0.5585 0.8541 0.8520
0.5938 11.64 46000 0.5546 0.8548 0.8529
0.5882 12.15 48000 0.5515 0.8554 0.8535
0.5799 12.65 50000 0.5488 0.8561 0.8541
0.572 13.16 52000 0.5473 0.8566 0.8547
0.5718 13.67 54000 0.5468 0.8566 0.8547
0.5698 14.17 56000 0.5464 0.8566 0.8547
0.5696 14.68 58000 0.5464 0.8566 0.8547

Framework versions

  • Transformers 4.18.0.dev0
  • Pytorch 1.9.1+cu111
  • Datasets 2.3.2
  • Tokenizers 0.11.6
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.