Edit model card

whisper-largev2-faroese-8k-steps-100h

Paper: ASR Language Resources for Faroese

The "whisper-largev2-faroese-8k-steps-100h" is an acoustic model suitable for Automatic Speech Recognition in Faroese. It is the result of fine-tuning the model "openai/whisper-large-v2" with 100 hours of Faroese data released by the Ravnur Project (https://maltokni.fo/en/) from the Faroe Islands.

The specific dataset used to create the model is called "Ravnursson Faroese Speech and Transcripts" and it is available at http://hdl.handle.net/20.500.12537/276.

The fine-tuning process was perform during March (2023) in the servers of the Language and Voice Lab (https://lvl.ru.is/) at Reykjavík University (Iceland) by Carlos Daniel Hernández Mena.

Evaluation

import torch
from transformers import WhisperForConditionalGeneration, WhisperProcessor

#Load the processor and model.
MODEL_NAME="carlosdanielhernandezmena/whisper-largev2-faroese-8k-steps-100h"
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME).to("cuda")

#Load the dataset
from datasets import load_dataset, load_metric, Audio
ds=load_dataset("carlosdanielhernandezmena/ravnursson_asr",split='test')

#Downsample to 16kHz
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))

#Process the dataset
def map_to_pred(batch):
    audio = batch["audio"]
    input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
    batch["reference"] = processor.tokenizer._normalize(batch['normalized_text'])

    with torch.no_grad():
        predicted_ids = model.generate(input_features.to("cuda"))[0]
    
    transcription = processor.decode(predicted_ids)
    batch["prediction"] = processor.tokenizer._normalize(transcription)
    
    return batch
    
#Do the evaluation
result = ds.map(map_to_pred)

#Compute the overall WER now.
from evaluate import load

wer = load("wer")
WER=100 * wer.compute(references=result["reference"], predictions=result["prediction"])
print(WER)

Test Result: 11.94492429631135

BibTeX entry and citation info

  • When publishing results based on these models please refer to:
@misc{mena2023whisperlargev2faroese,
      title={Acoustic Model in Faroese: whisper-largev2-faroese-8k-steps-100h.}, 
      author={Hernandez Mena, Carlos Daniel},
      url={https://huggingface.co/carlosdanielhernandezmena/whisper-largev2-faroese-8k-steps-100h},
      year={2023}
}

Acknowledgements

We want to thank to Jón Guðnason, head of the Language and Voice Lab for providing computational power to make this model possible. We also want to thank to the "Language Technology Programme for Icelandic 2019-2023" which is managed and coordinated by Almannarómur, and it is funded by the Icelandic Ministry of Education, Science and Culture.

Thanks to Annika Simonsen and to The Ravnur Project for making their "Basic Language Resource Kit"(BLARK 1.0) publicly available through the research paper "Creating a Basic Language Resource Kit for Faroese" https://aclanthology.org/2022.lrec-1.495.pdf

Special thanks to Björn Ingi Stefánsson for setting up the configuration of the server where this model was trained.

Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train carlosdanielhernandezmena/whisper-largev2-faroese-8k-steps-100h

Space using carlosdanielhernandezmena/whisper-largev2-faroese-8k-steps-100h 1

Evaluation results