Edit model card

Twitter September 2020 (RoBERTa-base, 103M)

This is a RoBERTa-base model trained on 102.86M tweets until the end of September 2020. More details and performance scores are available in the TimeLMs paper.

Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.

For other models trained until different periods, check this table.

Preprocess Text

Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed here.

def preprocess(text):
    preprocessed_text = []
    for t in text.split():
        if len(t) > 1:
            t = '@user' if t[0] == '@' and t.count('@') == 1 else t
            t = 'http' if t.startswith('http') else t
        preprocessed_text.append(t)
    return ' '.join(preprocessed_text)

Example Masked Language Model

from transformers import pipeline, AutoTokenizer

MODEL = "cardiffnlp/twitter-roberta-base-sep2020"
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL)
tokenizer = AutoTokenizer.from_pretrained(MODEL)

def pprint(candidates, n):
    for i in range(n):
        token = tokenizer.decode(candidates[i]['token'])
        score = candidates[i]['score']
        print("%d) %.5f %s" % (i+1, score, token))

texts = [
    "So glad I'm <mask> vaccinated.",
    "I keep forgetting to bring a <mask>.",
    "Looking forward to watching <mask> Game tonight!",
]
for text in texts:
    t = preprocess(text)
    print(f"{'-'*30}\n{t}")
    candidates = fill_mask(t)
    pprint(candidates, 5)

Output:

------------------------------
So glad I'm <mask> vaccinated.
1) 0.55215  not
2) 0.16466  getting
3) 0.08991  fully
4) 0.05542  being
5) 0.01733  still
------------------------------
I keep forgetting to bring a <mask>.
1) 0.18145  mask
2) 0.04476  book
3) 0.03751  knife
4) 0.03713  laptop
5) 0.02873  bag
------------------------------
Looking forward to watching <mask> Game tonight!
1) 0.53243  the
2) 0.24435  The
3) 0.04717  End
4) 0.02421  this
5) 0.00958  Championship

Example Tweet Embeddings

from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np
from scipy.spatial.distance import cosine
from collections import Counter

def get_embedding(text):  # naive approach for demonstration
  text = preprocess(text)
  encoded_input = tokenizer(text, return_tensors='pt')
  features = model(**encoded_input)
  features = features[0].detach().cpu().numpy() 
  return np.mean(features[0], axis=0) 


MODEL = "cardiffnlp/twitter-roberta-base-sep2020"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModel.from_pretrained(MODEL)

query = "The book was awesome"
tweets = ["I just ordered fried chicken 🐣", 
          "The movie was great",
          "What time is the next game?",
          "Just finished reading 'Embeddings in NLP'"]

sims = Counter()
for tweet in tweets:
    sim = 1 - cosine(get_embedding(query), get_embedding(tweet))
    sims[tweet] = sim

print('Most similar to: ', query)
print(f"{'-'*30}")
for idx, (tweet, sim) in enumerate(sims.most_common()):
    print("%d) %.5f %s" % (idx+1, sim, tweet))

Output:

Most similar to:  The book was awesome
------------------------------
1) 0.99045 The movie was great
2) 0.96650 Just finished reading 'Embeddings in NLP'
3) 0.95947 I just ordered fried chicken 🐣
4) 0.95707 What time is the next game?

Example Feature Extraction

from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np

MODEL = "cardiffnlp/twitter-roberta-base-sep2020"
tokenizer = AutoTokenizer.from_pretrained(MODEL)

text = "Good night 😊"
text = preprocess(text)

# Pytorch
model = AutoModel.from_pretrained(MODEL)
encoded_input = tokenizer(text, return_tensors='pt')
features = model(**encoded_input)
features = features[0].detach().cpu().numpy() 
features_mean = np.mean(features[0], axis=0) 
#features_max = np.max(features[0], axis=0)

# # Tensorflow
# model = TFAutoModel.from_pretrained(MODEL)
# encoded_input = tokenizer(text, return_tensors='tf')
# features = model(encoded_input)
# features = features[0].numpy()
# features_mean = np.mean(features[0], axis=0) 
# #features_max = np.max(features[0], axis=0)
Downloads last month
1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including cardiffnlp/twitter-roberta-base-sep2020