Edit model card

Twitter March 2020 (RoBERTa-base, 94M)

This is a RoBERTa-base model trained on 94.46M tweets until the end of March 2020. More details and performance scores are available in the TimeLMs paper.

Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.

For other models trained until different periods, check this table.

Preprocess Text

Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed here.

def preprocess(text):
    preprocessed_text = []
    for t in text.split():
        if len(t) > 1:
            t = '@user' if t[0] == '@' and t.count('@') == 1 else t
            t = 'http' if t.startswith('http') else t
        preprocessed_text.append(t)
    return ' '.join(preprocessed_text)

Example Masked Language Model

from transformers import pipeline, AutoTokenizer

MODEL = "cardiffnlp/twitter-roberta-base-mar2020"
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL)
tokenizer = AutoTokenizer.from_pretrained(MODEL)

def pprint(candidates, n):
    for i in range(n):
        token = tokenizer.decode(candidates[i]['token'])
        score = candidates[i]['score']
        print("%d) %.5f %s" % (i+1, score, token))

texts = [
    "So glad I'm <mask> vaccinated.",
    "I keep forgetting to bring a <mask>.",
    "Looking forward to watching <mask> Game tonight!",
]
for text in texts:
    t = preprocess(text)
    print(f"{'-'*30}\n{t}")
    candidates = fill_mask(t)
    pprint(candidates, 5)

Output:

------------------------------
So glad I'm <mask> vaccinated.
1) 0.57291  not
2) 0.14380  getting
3) 0.06983  self
4) 0.06813  fully
5) 0.02965  being
------------------------------
I keep forgetting to bring a <mask>.
1) 0.05637  book
2) 0.04557  laptop
3) 0.03842  wallet
4) 0.03824  pillow
5) 0.03485  bag
------------------------------
Looking forward to watching <mask> Game tonight!
1) 0.59311  the
2) 0.18969  The
3) 0.04493  this
4) 0.02133  End
5) 0.00796  This

Example Tweet Embeddings

from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np
from scipy.spatial.distance import cosine
from collections import Counter

def get_embedding(text):  # naive approach for demonstration
  text = preprocess(text)
  encoded_input = tokenizer(text, return_tensors='pt')
  features = model(**encoded_input)
  features = features[0].detach().cpu().numpy() 
  return np.mean(features[0], axis=0) 


MODEL = "cardiffnlp/twitter-roberta-base-mar2020"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModel.from_pretrained(MODEL)

query = "The book was awesome"
tweets = ["I just ordered fried chicken 🐣", 
          "The movie was great",
          "What time is the next game?",
          "Just finished reading 'Embeddings in NLP'"]

sims = Counter()
for tweet in tweets:
    sim = 1 - cosine(get_embedding(query), get_embedding(tweet))
    sims[tweet] = sim

print('Most similar to: ', query)
print(f"{'-'*30}")
for idx, (tweet, sim) in enumerate(sims.most_common()):
    print("%d) %.5f %s" % (idx+1, sim, tweet))

Output:

Most similar to:  The book was awesome
------------------------------
1) 0.98956 The movie was great
2) 0.96389 Just finished reading 'Embeddings in NLP'
3) 0.95678 I just ordered fried chicken 🐣
4) 0.95588 What time is the next game?

Example Feature Extraction

from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np

MODEL = "cardiffnlp/twitter-roberta-base-mar2020"
tokenizer = AutoTokenizer.from_pretrained(MODEL)

text = "Good night 😊"
text = preprocess(text)

# Pytorch
model = AutoModel.from_pretrained(MODEL)
encoded_input = tokenizer(text, return_tensors='pt')
features = model(**encoded_input)
features = features[0].detach().cpu().numpy() 
features_mean = np.mean(features[0], axis=0) 
#features_max = np.max(features[0], axis=0)

# # Tensorflow
# model = TFAutoModel.from_pretrained(MODEL)
# encoded_input = tokenizer(text, return_tensors='tf')
# features = model(encoded_input)
# features = features[0].numpy()
# features_mean = np.mean(features[0], axis=0) 
# #features_max = np.max(features[0], axis=0)
Downloads last month
21
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including cardiffnlp/twitter-roberta-base-mar2020