Wav2Vec2-Large-XLSR-Javanese

Fine-tuned facebook/wav2vec2-large-xlsr-53 on the OpenSLR High quality TTS data for Javanese. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset, load_metric, Dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets.utils.download_manager import DownloadManager
from pathlib import Path
import pandas as pd

def load_dataset_javanese():
    urls = [
        "https://www.openslr.org/resources/41/jv_id_female.zip",
        "https://www.openslr.org/resources/41/jv_id_male.zip"
    ]
    dm = DownloadManager()
    download_dirs = dm.download_and_extract(urls)
    data_dirs = [ 
        Path(download_dirs[0])/"jv_id_female/wavs",
        Path(download_dirs[1])/"jv_id_male/wavs",
    ]
    filenames = [ 
        Path(download_dirs[0])/"jv_id_female/line_index.tsv",
        Path(download_dirs[1])/"jv_id_male/line_index.tsv",
    ]
    
    dfs = []
    dfs.append(pd.read_csv(filenames[0], sep='\t', names=["path", "sentence"]))
    dfs.append(pd.read_csv(filenames[1], sep='\t', names=["path", "client_id", "sentence"]))
    dfs[1] = dfs[1].drop(["client_id"], axis=1)
    
    for i, dir in enumerate(data_dirs):
        dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1)
    df = pd.concat(dfs)
    # df = df.sample(frac=1, random_state=1).reset_index(drop=True)
    dataset = Dataset.from_pandas(df)
    dataset = dataset.remove_columns('__index_level_0__')
    
    return dataset.train_test_split(test_size=0.1, seed=1)

dataset = load_dataset_javanese()
test_dataset = dataset['test']

processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-javanese")
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-javanese")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])

Evaluation

The model can be evaluated as follows or using this notebook

import torch
import torchaudio
from datasets import load_dataset, load_metric, Dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
from datasets.utils.download_manager import DownloadManager
from pathlib import Path
import pandas as pd

def load_dataset_javanese():
    urls = [
        "https://www.openslr.org/resources/41/jv_id_female.zip",
        "https://www.openslr.org/resources/41/jv_id_male.zip"
    ]
    dm = DownloadManager()
    download_dirs = dm.download_and_extract(urls)
    data_dirs = [
        Path(download_dirs[0])/"jv_id_female/wavs",
        Path(download_dirs[1])/"jv_id_male/wavs",
    ]
    filenames = [
        Path(download_dirs[0])/"jv_id_female/line_index.tsv",
        Path(download_dirs[1])/"jv_id_male/line_index.tsv",
    ]

    dfs = []
    dfs.append(pd.read_csv(filenames[0], sep='\t', names=["path", "sentence"]))
    dfs.append(pd.read_csv(filenames[1], sep='\t', names=["path", "client_id", "sentence"]))
    dfs[1] = dfs[1].drop(["client_id"], axis=1)

    for i, dir in enumerate(data_dirs):
        dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1)
    df = pd.concat(dfs)
    # df = df.sample(frac=1, random_state=1).reset_index(drop=True)
    dataset = Dataset.from_pandas(df)
    dataset = dataset.remove_columns('__index_level_0__')

    return dataset.train_test_split(test_size=0.1, seed=1)

dataset = load_dataset_javanese()
test_dataset = dataset['test']

wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-javanese")
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-javanese") 
model.to("cuda")

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”_\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 17.61 %

Training

OpenSLR High quality TTS data for Javanese was used for training. The script used for training can be found here and to evaluate it

Downloads last month
22
Hosted inference API
Automatic Speech Recognition
or
This model can be loaded on the Inference API on-demand.
Evaluation results
  • Test WER on OpenSLR High quality TTS data for Javanese
    self-reported
    17.610