File size: 1,765 Bytes
162c34b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: other
library_name: peft
tags:
- llama-factory
- lora
- unsloth
- generated_from_trainer
base_model: unsloth/llama-3-70b-Instruct-bnb-4bit
model-index:
- name: A61K-15950_2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# A61K-15950_2

This model is a fine-tuned version of [/home/user/research/LLaMA-Factory/saves/LLaMA3-70B-qlora-bnb/lora/sft/A61K-15950/checkpoint-200](https://huggingface.co//home/user/research/LLaMA-Factory/saves/LLaMA3-70B-qlora-bnb/lora/sft/A61K-15950/checkpoint-200) on the patents_A61K_cla_abs_det_sample_2100_balance_train_llama-factory-15950 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3507

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.3663        | 0.4938 | 100  | 0.3549          |
| 0.3383        | 0.9877 | 200  | 0.3507          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1