File size: 2,677 Bytes
ee0ba32
 
 
 
 
 
 
 
 
 
 
 
 
 
e25c56f
ee0ba32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: teknium/OpenHermes-2.5-Mistral-7B
tags:
- generated_from_trainer
model-index:
- name: out
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# Enhanced Slither Auditor

This model is a fine-tuned version of [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1923

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1498        | 0.0   | 1    | 1.1953          |
| 0.321         | 0.1   | 31   | 0.3176          |
| 0.2693        | 0.2   | 62   | 0.2712          |
| 0.2701        | 0.31  | 93   | 0.2523          |
| 0.27          | 0.41  | 124  | 0.2362          |
| 0.2244        | 0.51  | 155  | 0.2284          |
| 0.2227        | 0.61  | 186  | 0.2260          |
| 0.2167        | 0.71  | 217  | 0.2171          |
| 0.2098        | 0.81  | 248  | 0.2082          |
| 0.1842        | 0.92  | 279  | 0.2047          |
| 0.1917        | 1.02  | 310  | 0.2013          |
| 0.1639        | 1.12  | 341  | 0.1982          |
| 0.1835        | 1.22  | 372  | 0.1968          |
| 0.1666        | 1.32  | 403  | 0.1953          |
| 0.1694        | 1.43  | 434  | 0.1932          |
| 0.1461        | 1.53  | 465  | 0.1929          |
| 0.1535        | 1.63  | 496  | 0.1927          |
| 0.1419        | 1.73  | 527  | 0.1925          |
| 0.1612        | 1.83  | 558  | 0.1923          |
| 0.1857        | 1.93  | 589  | 0.1923          |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1