cybersecurity-ner

This model is a fine-tuned version of distilbert-base-uncased on the cybersecurity-ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2196
  • Precision: 0.7942
  • Recall: 0.7925
  • F1: 0.7933
  • Accuracy: 0.9508

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 167 0.2492 0.6870 0.7406 0.7128 0.9293
No log 2.0 334 0.2026 0.7733 0.7346 0.7534 0.9420
0.2118 3.0 501 0.1895 0.7735 0.7934 0.7833 0.9493
0.2118 4.0 668 0.1834 0.7785 0.8189 0.7982 0.9511
0.2118 5.0 835 0.2060 0.8113 0.7965 0.8039 0.9522
0.0507 6.0 1002 0.2153 0.7692 0.8226 0.7950 0.9511
0.0507 7.0 1169 0.2141 0.7866 0.7962 0.7914 0.9507
0.0507 8.0 1336 0.2196 0.7942 0.7925 0.7933 0.9508

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
193
Safetensors
Model size
66.4M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for bnsapa/cybersecurity-ner

Finetuned
(7323)
this model

Dataset used to train bnsapa/cybersecurity-ner

Space using bnsapa/cybersecurity-ner 1