Edit model card

segformer-finetuned-4ss1st3r_s3gs3m_24Jan_gris-10k-steps

This model is a fine-tuned version of nvidia/mit-b0 on the blzncz/4ss1st3r_s3gs3m_24Jan_gris dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2539
  • Mean Iou: 0.5001
  • Mean Accuracy: 0.7682
  • Overall Accuracy: 0.9671
  • Accuracy Bg: nan
  • Accuracy Fallo cohesivo: 0.9929
  • Accuracy Fallo malla: 0.5837
  • Accuracy Fallo adhesivo: 0.8806
  • Accuracy Fallo burbuja: 0.6154
  • Iou Bg: 0.0
  • Iou Fallo cohesivo: 0.9663
  • Iou Fallo malla: 0.5505
  • Iou Fallo adhesivo: 0.4321
  • Iou Fallo burbuja: 0.5515

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Bg Accuracy Fallo cohesivo Accuracy Fallo malla Accuracy Fallo adhesivo Accuracy Fallo burbuja Iou Bg Iou Fallo cohesivo Iou Fallo malla Iou Fallo adhesivo Iou Fallo burbuja
0.1186 1.0 259 0.1688 0.5045 0.6750 0.9611 nan 0.9940 0.5027 0.8539 0.3494 0.0 0.9600 0.4717 0.7563 0.3344
0.0669 2.0 518 0.1603 0.4270 0.7755 0.9501 nan 0.9685 0.7091 0.8964 0.5282 0.0 0.9490 0.5466 0.1627 0.4767
0.0608 3.0 777 0.1863 0.4142 0.7612 0.9458 nan 0.9703 0.5906 0.9321 0.5517 0.0 0.9467 0.5366 0.0891 0.4985
0.0551 4.0 1036 0.1654 0.4515 0.7496 0.9620 nan 0.9879 0.5881 0.8763 0.5462 0.0 0.9620 0.5560 0.2349 0.5043
0.0462 5.0 1295 0.2067 0.4267 0.7598 0.9487 nan 0.9752 0.5450 0.8796 0.6392 0.0 0.9502 0.5377 0.0838 0.5620
0.0445 6.0 1554 0.1565 0.4557 0.7685 0.9627 nan 0.9873 0.5954 0.8571 0.6343 0.0 0.9636 0.5689 0.1837 0.5623
0.039 7.0 1813 0.1523 0.4576 0.8005 0.9609 nan 0.9817 0.6535 0.9036 0.6630 0.0 0.9612 0.5885 0.1643 0.5738
0.0367 8.0 2072 0.1954 0.4573 0.7462 0.9614 nan 0.9917 0.4963 0.8762 0.6206 0.0 0.9612 0.4850 0.2790 0.5612
0.0352 9.0 2331 0.2244 0.4757 0.7542 0.9636 nan 0.9932 0.5098 0.8867 0.6269 0.0 0.9629 0.5013 0.3466 0.5674
0.0357 10.0 2590 0.2119 0.4687 0.7394 0.9645 nan 0.9934 0.5378 0.8710 0.5552 0.0 0.9641 0.5209 0.3377 0.5207
0.0352 11.0 2849 0.1957 0.4469 0.7903 0.9584 nan 0.9791 0.6656 0.9237 0.5927 0.0 0.9591 0.5829 0.1459 0.5465
0.032 12.0 3108 0.1811 0.4521 0.8058 0.9594 nan 0.9797 0.6634 0.9338 0.6464 0.0 0.9608 0.5929 0.1397 0.5671
0.0299 13.0 3367 0.2403 0.4298 0.7596 0.9557 nan 0.9827 0.5553 0.9271 0.5733 0.0 0.9572 0.5336 0.1272 0.5311
0.0292 14.0 3626 0.2233 0.4667 0.7638 0.9642 nan 0.9900 0.5759 0.8508 0.6385 0.0 0.9638 0.5475 0.2511 0.5709
0.0264 15.0 3885 0.2382 0.4431 0.7690 0.9594 nan 0.9865 0.5492 0.9139 0.6267 0.0 0.9602 0.5326 0.1568 0.5658
0.0273 16.0 4144 0.2339 0.4382 0.7751 0.9570 nan 0.9818 0.5876 0.9193 0.6115 0.0 0.9584 0.5419 0.1352 0.5554
0.0249 17.0 4403 0.2078 0.4950 0.7846 0.9669 nan 0.9925 0.5784 0.9197 0.6477 0.0 0.9663 0.5508 0.3921 0.5658
0.0242 18.0 4662 0.2495 0.4809 0.7706 0.9645 nan 0.9922 0.5392 0.9007 0.6503 0.0 0.9640 0.5147 0.3577 0.5682
0.0241 19.0 4921 0.2117 0.4491 0.7954 0.9589 nan 0.9815 0.6243 0.9423 0.6336 0.0 0.9597 0.5703 0.1508 0.5647
0.0243 20.0 5180 0.1989 0.4754 0.8013 0.9656 nan 0.9875 0.6416 0.9194 0.6568 0.0 0.9658 0.5879 0.2482 0.5751
0.0251 21.0 5439 0.2095 0.4607 0.7962 0.9629 nan 0.9853 0.6324 0.9337 0.6334 0.0 0.9634 0.5732 0.2073 0.5598
0.0238 22.0 5698 0.2063 0.4747 0.7927 0.9650 nan 0.9873 0.6383 0.9158 0.6293 0.0 0.9645 0.5779 0.2744 0.5569
0.0225 23.0 5957 0.2260 0.4656 0.7915 0.9640 nan 0.9880 0.6003 0.9106 0.6672 0.0 0.9642 0.5647 0.2241 0.5752
0.0231 24.0 6216 0.2454 0.4688 0.7783 0.9645 nan 0.9891 0.6019 0.9197 0.6024 0.0 0.9643 0.5591 0.2766 0.5442
0.0218 25.0 6475 0.2482 0.5143 0.7752 0.9665 nan 0.9919 0.5896 0.9136 0.6057 0.0 0.9655 0.5433 0.5236 0.5390
0.0223 26.0 6734 0.2474 0.4648 0.7660 0.9642 nan 0.9903 0.5784 0.9054 0.5898 0.0 0.9639 0.5502 0.2768 0.5334
0.0238 27.0 6993 0.2475 0.4717 0.7669 0.9651 nan 0.9920 0.5597 0.9019 0.6138 0.0 0.9648 0.5379 0.3087 0.5470
0.021 28.0 7252 0.2490 0.4740 0.7708 0.9649 nan 0.9919 0.5573 0.9116 0.6222 0.0 0.9645 0.5362 0.3142 0.5553
0.0208 29.0 7511 0.2369 0.4633 0.7669 0.9653 nan 0.9896 0.6134 0.8846 0.5799 0.0 0.9652 0.5762 0.2422 0.5327
0.0202 30.0 7770 0.2498 0.4863 0.7654 0.9655 nan 0.9930 0.5488 0.8931 0.6267 0.0 0.9647 0.5273 0.3811 0.5582
0.021 31.0 8029 0.2534 0.4799 0.7729 0.9657 nan 0.9915 0.5794 0.9043 0.6164 0.0 0.9652 0.5474 0.3368 0.5502
0.0202 32.0 8288 0.2626 0.4771 0.7627 0.9653 nan 0.9930 0.5464 0.9014 0.6098 0.0 0.9647 0.5272 0.3464 0.5474
0.0201 33.0 8547 0.2710 0.4903 0.7673 0.9659 nan 0.9936 0.5431 0.8994 0.6329 0.0 0.9653 0.5221 0.3997 0.5645
0.0195 34.0 8806 0.2589 0.4915 0.7662 0.9663 nan 0.9930 0.5644 0.8895 0.6177 0.0 0.9656 0.5368 0.4014 0.5537
0.0194 35.0 9065 0.2304 0.5092 0.7801 0.9675 nan 0.9919 0.6048 0.8941 0.6295 0.0 0.9667 0.5615 0.4576 0.5603
0.0188 36.0 9324 0.2674 0.5022 0.7629 0.9670 nan 0.9933 0.5783 0.8819 0.5982 0.0 0.9662 0.5461 0.4567 0.5418
0.0188 37.0 9583 0.2580 0.4897 0.7702 0.9665 nan 0.9925 0.5791 0.8884 0.6207 0.0 0.9660 0.5485 0.3793 0.5548
0.0192 38.0 9842 0.2556 0.5065 0.7656 0.9673 nan 0.9933 0.5823 0.8739 0.6130 0.0 0.9665 0.5494 0.4667 0.5500
0.019 38.61 10000 0.2539 0.5001 0.7682 0.9671 nan 0.9929 0.5837 0.8806 0.6154 0.0 0.9663 0.5505 0.4321 0.5515

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 2.0.1+cpu
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.