Edit model card

RuBERT for Sentiment Analysis of Product Reviews

This is a DeepPavlov/rubert-base-cased-conversational model trained on RuReviews.

Labels

0: NEUTRAL
1: POSITIVE
2: NEGATIVE

How to use


import torch
from transformers import AutoModelForSequenceClassification
from transformers import BertTokenizerFast

tokenizer = BertTokenizerFast.from_pretrained('blanchefort/rubert-base-cased-sentiment-rurewiews')
model = AutoModelForSequenceClassification.from_pretrained('blanchefort/rubert-base-cased-sentiment-rurewiews', return_dict=True)

@torch.no_grad()
def predict(text):
    inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
    outputs = model(**inputs)
    predicted = torch.nn.functional.softmax(outputs.logits, dim=1)
    predicted = torch.argmax(predicted, dim=1).numpy()
    return predicted

Dataset used for model training

RuReviews

RuReviews: An Automatically Annotated Sentiment Analysis Dataset for Product Reviews in Russian.

Downloads last month
80
Safetensors
Model size
178M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using blanchefort/rubert-base-cased-sentiment-rurewiews 2