RuBERT for Sentiment Analysis of Product Reviews

This is a DeepPavlov/rubert-base-cased-conversational model trained on RuReviews.

Labels

0: NEUTRAL
1: POSITIVE
2: NEGATIVE

How to use


import torch
from transformers import AutoModelForSequenceClassification
from transformers import BertTokenizerFast

tokenizer = BertTokenizerFast.from_pretrained('blanchefort/rubert-base-cased-sentiment-rurewiews')
model = AutoModelForSequenceClassification.from_pretrained('blanchefort/rubert-base-cased-sentiment-rurewiews', return_dict=True)

@torch.no_grad()
def predict(text):
    inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
    outputs = model(**inputs)
    predicted = torch.nn.functional.softmax(outputs.logits, dim=1)
    predicted = torch.argmax(predicted, dim=1).numpy()
    return predicted

Dataset used for model training

RuReviews

RuReviews: An Automatically Annotated Sentiment Analysis Dataset for Product Reviews in Russian.

Downloads last month
100
Hosted inference API
Text Classification
This model can be loaded on the Inference API on-demand.