RuBERT for Sentiment Analysis of Product Reviews
This is a DeepPavlov/rubert-base-cased-conversational model trained on RuReviews.
Labels
0: NEUTRAL
1: POSITIVE
2: NEGATIVE
How to use
import torch
from transformers import AutoModelForSequenceClassification
from transformers import BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained('blanchefort/rubert-base-cased-sentiment-rurewiews')
model = AutoModelForSequenceClassification.from_pretrained('blanchefort/rubert-base-cased-sentiment-rurewiews', return_dict=True)
@torch.no_grad()
def predict(text):
inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**inputs)
predicted = torch.nn.functional.softmax(outputs.logits, dim=1)
predicted = torch.argmax(predicted, dim=1).numpy()
return predicted
Dataset used for model training
RuReviews: An Automatically Annotated Sentiment Analysis Dataset for Product Reviews in Russian.
- Downloads last month
- 106
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.