Edit model card

SetFit with sentence-transformers/all-mpnet-base-v2

This is a SetFit model trained on the bhaskars113/toyota-paint-attributes dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("bhaskars113/toyota-paint-attribute-1.1")
# Run inference
preds = model("The car is from Utah and garage kept, so the paint is still in very good condition")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 5 33.8098 155

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0004 1 0.1664 -
0.0196 50 0.2377 -
0.0392 100 0.1178 -
0.0588 150 0.0577 -
0.0784 200 0.0163 -
0.0980 250 0.0265 -
0.1176 300 0.0867 -
0.1373 350 0.0181 -
0.1569 400 0.0153 -
0.1765 450 0.0411 -
0.1961 500 0.0308 -
0.2157 550 0.0258 -
0.2353 600 0.0062 -
0.2549 650 0.0036 -
0.2745 700 0.0087 -
0.2941 750 0.0025 -
0.3137 800 0.004 -
0.3333 850 0.0025 -
0.3529 900 0.0044 -
0.3725 950 0.0031 -
0.3922 1000 0.0018 -
0.4118 1050 0.0046 -
0.4314 1100 0.0013 -
0.4510 1150 0.0014 -
0.4706 1200 0.002 -
0.4902 1250 0.0015 -
0.5098 1300 0.0039 -
0.5294 1350 0.0019 -
0.5490 1400 0.0011 -
0.5686 1450 0.0008 -
0.5882 1500 0.0015 -
0.6078 1550 0.0012 -
0.6275 1600 0.0011 -
0.6471 1650 0.0008 -
0.6667 1700 0.0016 -
0.6863 1750 0.0009 -
0.7059 1800 0.0008 -
0.7255 1850 0.0008 -
0.7451 1900 0.0008 -
0.7647 1950 0.0011 -
0.7843 2000 0.0008 -
0.8039 2050 0.001 -
0.8235 2100 0.001 -
0.8431 2150 0.0009 -
0.8627 2200 0.0067 -
0.8824 2250 0.0008 -
0.9020 2300 0.0009 -
0.9216 2350 0.0009 -
0.9412 2400 0.0007 -
0.9608 2450 0.0006 -
0.9804 2500 0.0007 -
1.0 2550 0.0006 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 2.7.0
  • Transformers: 4.40.2
  • PyTorch: 2.2.1+cu121
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
6
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for bhaskars113/toyota-paint-attribute-1.1

Finetuned
(155)
this model

Dataset used to train bhaskars113/toyota-paint-attribute-1.1