Model Card for Model ID
Model Details
Reasoning more natural and faster maybe... Recommend system prompt like deepseek
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
MAX_REASONING_TOKENS = 4096
MAX_RESPONSE_TOKENS = 1024
model_name = "beyoru/ThinkAgain1.2"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [
{'role': 'system', 'content': """You are a helpful and harmless AI assistant.
A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process in the mind and then provides the user with the answer.
The reasoning process and answer are enclosed within `<think> </think>` and `<answer> </answer>`\
tags, respectively, i.e., `<think> reasoning process here </think>` `<answer> answer here </answer>`.
User: **prompt**.
Assistant:"""}
]
def stream_output(output_text):
for char in output_text:
print(char, end="", flush=True)
while True:
prompt = input("USER: ")
messages.append({"role": "user", "content": prompt})
# Generate reasoning
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
messages.append({"role": "reasoning", "content": reasoning_output})
print("REASONING: ", end="")
stream_output(reasoning_output)
print()
# Generate answer
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)
messages.append({"role": "assistant", "content": response_output})
print("ASSISTANT: ", end="")
stream_output(response_output)
print()
Improvement:
- Better performance in other language
- Reduce hallucination in some case
Config:
update
- Downloads last month
- 52
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.