File size: 5,057 Bytes
a7cf889
 
 
 
 
 
 
 
 
6d40811
a7cf889
ab8568f
a7cf889
ab8568f
 
30c5976
a7cf889
 
 
 
ab8568f
a7cf889
 
 
 
30c5976
ab8568f
f82bf1a
a7cf889
 
 
 
 
03e4c20
 
 
ab8568f
 
03e4c20
 
 
 
 
 
a7cf889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76b7799
ab8568f
a7cf889
 
 
 
ab8568f
a7cf889
ab8568f
 
 
a7cf889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab8568f
a7cf889
 
 
07b6685
a7cf889
f82bf1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7cf889
 
 
ab8568f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
language: de

widget:
- text: "In einer schockierenden Entdeckung fanden Wissenschaftler eine Herde Einhörner, die in einem abgelegenen, zuvor unerforschten Tal in den Anden lebten."

license: mit
---

# GerPT2

German large and small versions of GPT2:

- https://huggingface.co/benjamin/gerpt2
- https://huggingface.co/benjamin/gerpt2-large

See the [GPT2 model card](https://huggingface.co/gpt2) for considerations on limitations and bias. See the [GPT2 documentation](https://huggingface.co/transformers/model_doc/gpt2.html) for details on GPT2.

## Comparison to [dbmdz/german-gpt2](https://huggingface.co/dbmdz/german-gpt2)

I evaluated both GerPT2-large and the other German GPT2, [dbmdz/german-gpt2](https://huggingface.co/dbmdz/german-gpt2) on the [CC-100](http://data.statmt.org/cc-100/) dataset and on the German Wikipedia:

|                   | CC-100 (PPL) | Wikipedia (PPL) |
|-------------------|--------------|-----------------|
| dbmdz/german-gpt2 | 49.47        | 62.92           |
| GerPT2            | 24.78        | 35.33           |
| GerPT2-large      | __16.08__    | __23.26__       |
|                   |              |                 |

See the script `evaluate.py` in the [GerPT2 Github repository](https://github.com/bminixhofer/gerpt2) for the code.

## Usage

```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

tokenizer = AutoTokenizer.from_pretrained("benjamin/gerpt2-large")
model = AutoModelForCausalLM.from_pretrained("benjamin/gerpt2-large")

prompt = "<your prompt>"

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
print(pipe(prompt)[0]["generated_text"])
```

Also, two tricks might improve the generated text:

```python
output = model.generate(
    # during training an EOS token was used to mark the beginning of each text
    # so it can help to insert it at the start
    torch.tensor(
        [tokenizer.eos_token_id] + tokenizer.encode(prompt)
    ).unsqueeze(0),
    do_sample=True,
    # try setting bad_words_ids=[[0]] to disallow generating an EOS token, without this the model is
    # prone to ending generation early because a significant number of texts from the training corpus
    # is quite short
    bad_words_ids=[[0]],
    max_length=max_length,
)[0]
print(tokenizer.decode(output))
```

## Training details

GerPT2-large is trained on the entire German data from the [CC-100 Corpus](http://data.statmt.org/cc-100/) and weights were initialized from the [English GPT2 model](https://huggingface.co/gpt2-large). 
GerPT2-large was trained with:

- a batch size of 256
- using OneCycle learning rate with a maximum of 5e-3
- with AdamW with a weight decay of 0.01
- for 2 epochs

Training took roughly 12 days on 8 TPUv3 cores.

To train GerPT2-large, follow these steps. Scripts are located in the [Github repository](https://github.com/bminixhofer/gerpt2):

0. Download and unzip training data from http://data.statmt.org/cc-100/.
1. Train a tokenizer using `prepare/train_tokenizer.py`. As training data for the tokenizer I used a random subset of 5% of the CC-100 data.
2. (optionally) generate a German input embedding matrix with `prepare/generate_aligned_wte.py`. This uses a neat trick to semantically map tokens from the English tokenizer to tokens from the German tokenizer using aligned word embeddings. E. g.:

```
ĠMinde -> Ġleast
Ġjed -> Ġwhatsoever
flughafen -> Air
vermittlung -> employment
teilung -> ignment
ĠInterpretation -> Ġinterpretation
Ġimport -> Ġimported
hansa -> irl
genehmigungen -> exempt
ĠAuflist -> Ġlists
Ġverschwunden -> Ġdisappeared
ĠFlyers -> ĠFlyers
Kanal -> Channel
Ġlehr -> Ġteachers
Ġnahelie -> Ġconvenient
gener -> Generally
mitarbeiter -> staff
```

This helps a lot on a trial run I did, although I wasn't able to do a full comparison due to budget and time constraints. To use this WTE matrix it can be passed via the `wte_path` to the training script. Credit to [this blogpost](https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787) for the idea of initializing GPT2 from English weights. 

3. Tokenize the corpus using `prepare/tokenize_text.py`. This generates files for train and validation tokens in JSON Lines format.
4. Run the training script `train.py`! `run.sh` shows how this was executed for the full run with config `configs/tpu_large.json`.

## License

GerPT2 is licensed under the MIT License.

## Citing

Please cite GerPT2 as follows:

```
@misc{Minixhofer_GerPT2_German_large_2020,
author = {Minixhofer, Benjamin},
doi = {10.5281/zenodo.5509984},
month = {12},
title = {{GerPT2: German large and small versions of GPT2}},
url = {https://github.com/bminixhofer/gerpt2},
year = {2020}
}
```

## Acknowledgements

Thanks to [Hugging Face](https://huggingface.co) for awesome tools and infrastructure.
Huge thanks to [Artus Krohn-Grimberghe](https://twitter.com/artuskg) at [LYTiQ](https://www.lytiq.de/) for making this possible by sponsoring the resources used for training.