qwenvl-2B-cadica-stenosis-classify-scale4-frozenVision

This model is a fine-tuned version of AdaptLLM/biomed-Qwen2-VL-2B-Instruct on the CADICA狹窄分析選擇題scale4(TRAIN) dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6319
  • Num Input Tokens Seen: 39760664

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 6
  • total_train_batch_size: 24
  • total_eval_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • training_steps: 3400

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.9157 0.0258 50 0.9192 584856
0.901 0.0515 100 0.9078 1169664
0.9032 0.0773 150 0.8962 1754512
0.9053 0.1030 200 0.8982 2339304
0.9098 0.1288 250 0.8956 2924016
0.8893 0.1545 300 0.8909 3508888
0.9075 0.1803 350 0.8920 4093688
0.9004 0.2060 400 0.9086 4678384
0.9076 0.2318 450 0.8962 5263304
0.8962 0.2575 500 0.8988 5848048
0.9013 0.2833 550 0.9001 6432936
0.9046 0.3090 600 0.9053 7017576
0.904 0.3348 650 0.9033 7602512
0.8972 0.3605 700 0.9029 8187320
0.9005 0.3863 750 0.8982 8772104
0.8881 0.4121 800 0.8973 9357016
0.9035 0.4378 850 0.8779 9941896
0.8961 0.4636 900 0.8914 10526712
0.8852 0.4893 950 0.8916 11111520
0.8635 0.5151 1000 0.8602 11696200
0.8844 0.5408 1050 0.8446 12281072
0.8427 0.5666 1100 0.7743 12865992
0.8185 0.5923 1150 0.7827 13450720
0.8061 0.6181 1200 0.7594 14035544
0.7917 0.6438 1250 0.7407 14620336
0.7724 0.6696 1300 0.7190 15205064
0.7278 0.6953 1350 0.7129 15789848
0.7359 0.7211 1400 0.6644 16374784
0.6291 0.7468 1450 0.7531 16959632
0.6021 0.7726 1500 0.6329 17544440
0.667 0.7984 1550 0.6618 18129304
0.6564 0.8241 1600 0.6319 18714072
0.5668 0.8499 1650 0.6635 19298848
0.5701 0.8756 1700 0.7144 19883504
0.546 0.9014 1750 0.6723 20468200
0.412 0.9271 1800 0.6769 21053080
0.4347 0.9529 1850 0.6808 21637848
0.3737 0.9786 1900 0.7730 22222632
0.3783 1.0041 1950 0.6983 22801512
0.3328 1.0299 2000 0.7485 23386232
0.3602 1.0556 2050 0.7191 23971048
0.3351 1.0814 2100 0.8075 24555904
0.3699 1.1071 2150 0.8524 25140752
0.4016 1.1329 2200 0.7535 25725560
0.3442 1.1586 2250 0.7066 26310336
0.3877 1.1844 2300 0.7277 26895096
0.3871 1.2101 2350 0.7660 27479840
0.3486 1.2359 2400 0.7411 28064552
0.2966 1.2617 2450 0.7486 28649256
0.3221 1.2874 2500 0.7222 29233968
0.3231 1.3132 2550 0.7146 29818856
0.2779 1.3389 2600 0.6957 30403640
0.2962 1.3647 2650 0.7657 30988344
0.3163 1.3904 2700 0.7473 31573240
0.164 1.4162 2750 0.7807 32158144
0.2939 1.4419 2800 0.7913 32743032
0.2848 1.4677 2850 0.8045 33327720
0.29 1.4934 2900 0.8113 33912440
0.2494 1.5192 2950 0.8177 34497216
0.2259 1.5449 3000 0.8406 35082056
0.2851 1.5707 3050 0.8474 35666976
0.2351 1.5964 3100 0.8651 36251744
0.2638 1.6222 3150 0.8634 36836560
0.312 1.6480 3200 0.8680 37421416
0.2785 1.6737 3250 0.8640 38006200
0.2752 1.6995 3300 0.8644 38591128
0.2674 1.7252 3350 0.8666 39175888
0.1797 1.7510 3400 0.8603 39760664

Framework versions

  • PEFT 0.12.0
  • Transformers 4.47.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
16
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ben81828/qwenvl-2B-cadica-stenosis-classify-scale4-frozenVision

Base model

Qwen/Qwen2-VL-2B
Adapter
(7)
this model