vit-base_rvl_cdip_aurc

This model is a fine-tuned version of jordyvl/vit-base_rvl-cdip on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2759
  • Accuracy: 0.893
  • Brier Loss: 0.1798
  • Nll: 0.8614
  • F1 Micro: 0.893
  • F1 Macro: 0.8928
  • Ece: 0.0750
  • Aurc: 0.0215

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
0.0303 1.0 500 0.1865 0.8795 0.1840 1.2087 0.8795 0.8791 0.0495 0.0241
0.0262 2.0 1000 0.2146 0.8788 0.1909 1.1956 0.8788 0.8789 0.0603 0.0257
0.0121 3.0 1500 0.2117 0.886 0.1799 1.0878 0.886 0.8865 0.0611 0.0230
0.0057 4.0 2000 0.2279 0.8878 0.1803 1.0108 0.8878 0.8879 0.0678 0.0228
0.0038 5.0 2500 0.2491 0.8872 0.1827 0.9661 0.8872 0.8877 0.0725 0.0234
0.0028 6.0 3000 0.2398 0.89 0.1806 0.9378 0.89 0.8901 0.0725 0.0215
0.0016 7.0 3500 0.2736 0.891 0.1792 0.8975 0.891 0.8914 0.0744 0.0221
0.0014 8.0 4000 0.2357 0.8905 0.1811 0.8993 0.8905 0.8910 0.0764 0.0210
0.001 9.0 4500 0.2714 0.8898 0.1807 0.8650 0.8898 0.8897 0.0783 0.0213
0.0009 10.0 5000 0.2759 0.893 0.1798 0.8614 0.893 0.8928 0.0750 0.0215

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.2.0.dev20231002
  • Datasets 2.7.1
  • Tokenizers 0.13.3
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for bdpc/vit-base_rvl_cdip_aurc

Finetuned
(25)
this model