SciBERT_100K_steps

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0144
  • Accuracy: 0.9947
  • Precision: 0.7850
  • Recall: 0.6355
  • F1: 0.7024
  • Hamming: 0.0053

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 100000

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Hamming
0.1681 0.08 5000 0.0487 0.9902 0.0 0.0 0.0 0.0098
0.032 0.16 10000 0.0223 0.9930 0.8068 0.3728 0.5100 0.0070
0.0201 0.24 15000 0.0186 0.9937 0.7815 0.4970 0.6076 0.0063
0.018 0.32 20000 0.0172 0.9941 0.7763 0.5550 0.6472 0.0059
0.017 0.4 25000 0.0166 0.9942 0.7864 0.5624 0.6558 0.0058
0.0166 0.47 30000 0.0163 0.9943 0.7707 0.5880 0.6671 0.0057
0.0163 0.55 35000 0.0160 0.9943 0.7802 0.5809 0.6659 0.0057
0.0159 0.63 40000 0.0158 0.9944 0.7719 0.6012 0.6759 0.0056
0.0157 0.71 45000 0.0155 0.9945 0.7750 0.6104 0.6829 0.0055
0.0154 0.79 50000 0.0153 0.9945 0.7734 0.6202 0.6884 0.0055
0.0153 0.87 55000 0.0151 0.9945 0.7823 0.6072 0.6837 0.0055
0.0152 0.95 60000 0.0151 0.9945 0.7813 0.6124 0.6866 0.0055
0.0148 1.03 65000 0.0149 0.9946 0.7843 0.6208 0.6930 0.0054
0.0143 1.11 70000 0.0148 0.9946 0.7802 0.6231 0.6929 0.0054
0.0142 1.19 75000 0.0148 0.9946 0.7714 0.6377 0.6982 0.0054
0.0141 1.27 80000 0.0146 0.9947 0.7837 0.6281 0.6973 0.0053
0.0141 1.34 85000 0.0146 0.9947 0.7836 0.6374 0.7030 0.0053
0.014 1.42 90000 0.0145 0.9947 0.7859 0.6326 0.7010 0.0053
0.0139 1.5 95000 0.0145 0.9947 0.7875 0.6317 0.7010 0.0053
0.0139 1.58 100000 0.0144 0.9947 0.7850 0.6355 0.7024 0.0053

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.7.1
  • Tokenizers 0.14.1
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bdpc/SciBERT_100K_steps

Finetuned
(57)
this model