whisper-small-mn-3

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3277
  • Wer: 30.3692
  • Cer: 10.9030

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 15000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.3408 0.61 1000 0.4062 47.6841 17.3811
0.2261 1.22 2000 0.3262 37.8086 13.6466
0.2135 1.83 3000 0.2863 33.7175 12.2246
0.1643 2.43 4000 0.2803 32.5978 11.4526
0.1198 3.04 5000 0.2747 31.1121 11.0533
0.1279 3.65 6000 0.2757 30.7243 10.8927
0.0891 4.26 7000 0.2878 30.9209 11.0610
0.0899 4.87 8000 0.2906 30.6642 11.0799
0.0648 5.48 9000 0.3054 30.5986 10.9030
0.0436 6.09 10000 0.3184 30.5222 10.9434
0.0468 6.7 11000 0.3277 30.3692 10.9030
0.0291 7.3 12000 0.3411 30.9810 11.1572
0.0275 7.91 13000 0.3476 31.0684 11.1555
0.0196 8.52 14000 0.3572 30.9154 11.1065
0.0159 9.13 15000 0.3600 31.0356 11.2087

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2
Downloads last month
31
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train bayartsogt/whisper-small-mn-3

Evaluation results