Exllama v2 Quantizations of dolphin-2.6-mistral-7b-dpo

Using turboderp's ExLlamaV2 v0.0.11 for quantization.

Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.

Original model: https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo

Model Size: 7b

Branch Bits lm_head bits Dataset Size Description
8_0 8.0 8.0 Default 9.8 GB Maximum quality that ExLlamaV2 can produce, near unquantized performance.
6_5 6.5 8.0 Default 8.6 GB Very similar to 8.0, good tradeoff of size vs performance, recommended.
5_0 5.0 6.0 Default 7.4 GB Slightly lower perplexity vs 6.5.
4_0 4.0 6.0 Default 6.5 GB Just under GPTQ equivalent bits per weight.

All VRAM requirements estimated from 16k context. For 32k context add ~2 GB.

4.0 bits per weight

5.0 bits per weight

6.5 bits per weight

8.0 bits per weight

Download instructions

With git:

git clone --single-branch --branch 4_0 https://huggingface.co/bartowski/dolphin-2.6-mistral-7b-dpo-exl2

With huggingface hub (credit to TheBloke for instructions):

pip3 install huggingface-hub

To download the main (only useful if you only care about measurement.json) branch to a folder called dolphin-2.6-mistral-7b-dpo-exl2:

mkdir dolphin-2.6-mistral-7b-dpo-exl2
huggingface-cli download bartowski/dolphin-2.6-mistral-7b-dpo-exl2 --local-dir dolphin-2.6-mistral-7b-dpo-exl2 --local-dir-use-symlinks False

To download from a different branch, add the --revision parameter:

mkdir dolphin-2.6-mistral-7b-dpo-exl2-6_5
huggingface-cli download bartowski/dolphin-2.6-mistral-7b-dpo-exl2 --revision 6_5 --local-dir dolphin-2.6-mistral-7b-dpo-exl2-6_5 --local-dir-use-symlinks False
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .