Exllama v2 Quantizations of UNA-dolphin-2.6-mistral-7b-dpo-laser

Using turboderp's ExLlamaV2 v0.0.11 for quantization.

The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)

Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.

Original model: https://huggingface.co/fblgit/UNA-dolphin-2.6-mistral-7b-dpo-laser

Model Size: 7b

Branch Bits lm_head bits Dataset Size Description
8_0 8.0 8.0 Default 9.8 GB Maximum quality that ExLlamaV2 can produce, near unquantized performance.
6_5 6.5 8.0 Default 8.6 GB Very similar to 8.0, good tradeoff of size vs performance, recommended.
5_0 5.0 6.0 Default 7.4 GB Slightly lower perplexity vs 6.5.
4_0 4.0 6.0 Default 6.5 GB Just under GPTQ equivalent bits per weight.
3_5 3.5 6.0 Default 6.1 GB Lower quality, only use if you have to.

All VRAM requirements estimated from 16k context. For 32k context add ~2 GB.

Download instructions

With git:

git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2

With huggingface hub (credit to TheBloke for instructions):

pip3 install huggingface-hub

To download the main (only useful if you only care about measurement.json) branch to a folder called UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2:

mkdir UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2
huggingface-cli download bartowski/UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2 --local-dir UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2 --local-dir-use-symlinks False

To download from a different branch, add the --revision parameter:

mkdir UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2-6_5
huggingface-cli download bartowski/UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2 --revision 6_5 --local-dir UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2-6_5 --local-dir-use-symlinks False
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Datasets used to train bartowski/UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2