wav2vec2-large-xls-r-300m-upper-sorbian-pl-frozen-colab
This model is a fine-tuned version of on the common_voice_16_1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.7512
- Wer: 0.3985
- Cer: 0.0926
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 60
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.6621 | 3.23 | 100 | 0.6431 | 0.7048 | 0.1711 |
0.4922 | 6.45 | 200 | 0.5838 | 0.6120 | 0.1468 |
0.3591 | 9.68 | 300 | 0.5487 | 0.5621 | 0.1322 |
0.2869 | 12.9 | 400 | 0.5812 | 0.5436 | 0.1309 |
0.2179 | 16.13 | 500 | 0.6222 | 0.5014 | 0.1212 |
0.1731 | 19.35 | 600 | 0.6930 | 0.4808 | 0.1141 |
0.1315 | 22.58 | 700 | 0.6681 | 0.4721 | 0.1116 |
0.1044 | 25.81 | 800 | 0.6849 | 0.4567 | 0.1088 |
0.0876 | 29.03 | 900 | 0.7287 | 0.4623 | 0.1125 |
0.0822 | 32.26 | 1000 | 0.7278 | 0.4496 | 0.1097 |
0.0736 | 35.48 | 1100 | 0.7534 | 0.4552 | 0.1117 |
0.0641 | 38.71 | 1200 | 0.7500 | 0.4220 | 0.1025 |
0.0572 | 41.94 | 1300 | 0.7008 | 0.4227 | 0.1024 |
0.0495 | 45.16 | 1400 | 0.7697 | 0.4267 | 0.1011 |
0.0488 | 48.39 | 1500 | 0.7364 | 0.4051 | 0.0947 |
0.0444 | 51.61 | 1600 | 0.7444 | 0.4110 | 0.0952 |
0.0416 | 54.84 | 1700 | 0.7621 | 0.3983 | 0.0936 |
0.0398 | 58.06 | 1800 | 0.7512 | 0.3985 | 0.0926 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.