Edit model card

wav2vec2-large-xls-r-300m-upper-sorbian-pl-frozen-colab

This model is a fine-tuned version of on the common_voice_16_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7512
  • Wer: 0.3985
  • Cer: 0.0926

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 60
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.6621 3.23 100 0.6431 0.7048 0.1711
0.4922 6.45 200 0.5838 0.6120 0.1468
0.3591 9.68 300 0.5487 0.5621 0.1322
0.2869 12.9 400 0.5812 0.5436 0.1309
0.2179 16.13 500 0.6222 0.5014 0.1212
0.1731 19.35 600 0.6930 0.4808 0.1141
0.1315 22.58 700 0.6681 0.4721 0.1116
0.1044 25.81 800 0.6849 0.4567 0.1088
0.0876 29.03 900 0.7287 0.4623 0.1125
0.0822 32.26 1000 0.7278 0.4496 0.1097
0.0736 35.48 1100 0.7534 0.4552 0.1117
0.0641 38.71 1200 0.7500 0.4220 0.1025
0.0572 41.94 1300 0.7008 0.4227 0.1024
0.0495 45.16 1400 0.7697 0.4267 0.1011
0.0488 48.39 1500 0.7364 0.4051 0.0947
0.0444 51.61 1600 0.7444 0.4110 0.0952
0.0416 54.84 1700 0.7621 0.3983 0.0936
0.0398 58.06 1800 0.7512 0.3985 0.0926

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results