Edit model card

wav2vec2-large-xls-r-300m-upper-sorbian-pl-frozen-2-colab

This model is a fine-tuned version of on the common_voice_16_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6971
  • Wer: 0.3974
  • Cer: 0.0976

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 60
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.6605 3.23 100 0.6446 0.7160 0.1772
0.499 6.45 200 0.5900 0.6256 0.1482
0.3831 9.68 300 0.5681 0.5825 0.1385
0.2866 12.9 400 0.5691 0.5239 0.1235
0.2269 16.13 500 0.6304 0.5061 0.1202
0.1725 19.35 600 0.6649 0.4864 0.1137
0.1365 22.58 700 0.6574 0.4597 0.1107
0.1081 25.81 800 0.6525 0.4452 0.1057
0.0873 29.03 900 0.6799 0.4236 0.1031
0.0782 32.26 1000 0.7263 0.4468 0.1093
0.0715 35.48 1100 0.7404 0.4173 0.1002
0.061 38.71 1200 0.6985 0.4208 0.1009
0.0551 41.94 1300 0.7094 0.4082 0.0988
0.049 45.16 1400 0.7069 0.4096 0.1011
0.0492 48.39 1500 0.6971 0.4117 0.1008
0.0441 51.61 1600 0.6906 0.4025 0.0972
0.0407 54.84 1700 0.7154 0.4035 0.0985
0.0389 58.06 1800 0.6971 0.3974 0.0976

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2
Downloads last month
6
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results