wav2vec2-large-xls-r-300m-upper-sorbian-pl-frozen-2-colab
This model is a fine-tuned version of on the common_voice_16_1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.6971
- Wer: 0.3974
- Cer: 0.0976
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 60
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.6605 | 3.23 | 100 | 0.6446 | 0.7160 | 0.1772 |
0.499 | 6.45 | 200 | 0.5900 | 0.6256 | 0.1482 |
0.3831 | 9.68 | 300 | 0.5681 | 0.5825 | 0.1385 |
0.2866 | 12.9 | 400 | 0.5691 | 0.5239 | 0.1235 |
0.2269 | 16.13 | 500 | 0.6304 | 0.5061 | 0.1202 |
0.1725 | 19.35 | 600 | 0.6649 | 0.4864 | 0.1137 |
0.1365 | 22.58 | 700 | 0.6574 | 0.4597 | 0.1107 |
0.1081 | 25.81 | 800 | 0.6525 | 0.4452 | 0.1057 |
0.0873 | 29.03 | 900 | 0.6799 | 0.4236 | 0.1031 |
0.0782 | 32.26 | 1000 | 0.7263 | 0.4468 | 0.1093 |
0.0715 | 35.48 | 1100 | 0.7404 | 0.4173 | 0.1002 |
0.061 | 38.71 | 1200 | 0.6985 | 0.4208 | 0.1009 |
0.0551 | 41.94 | 1300 | 0.7094 | 0.4082 | 0.0988 |
0.049 | 45.16 | 1400 | 0.7069 | 0.4096 | 0.1011 |
0.0492 | 48.39 | 1500 | 0.6971 | 0.4117 | 0.1008 |
0.0441 | 51.61 | 1600 | 0.6906 | 0.4025 | 0.0972 |
0.0407 | 54.84 | 1700 | 0.7154 | 0.4035 | 0.0985 |
0.0389 | 58.06 | 1800 | 0.6971 | 0.3974 | 0.0976 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.