Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch

Task: recognition

https://github.com/mindee/doctr

Example usage:

>>> from doctr.io import DocumentFile
>>> from doctr.models import ocr_predictor, from_hub

>>> img = DocumentFile.from_images(['<image_path>'])
>>> # Load your model from the hub
>>> model = from_hub('mindee/my-model')

>>> # Pass it to the predictor
>>> # If your model is a recognition model:
>>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large',
>>>                           reco_arch=model,
>>>                           pretrained=True)

>>> # If your model is a detection model:
>>> predictor = ocr_predictor(det_arch=model,
>>>                           reco_arch='crnn_mobilenet_v3_small',
>>>                           pretrained=True)

>>> # Get your predictions
>>> res = predictor(img)

Run Configuration

{ "arch": "crnn_mobilenet_v3_large", "train_path": "train", "val_path": "val", "train_samples": 1000, "val_samples": 20, "font": "FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", "min_chars": 1, "max_chars": 12, "name": "crnn_mobilenet_v3_large_gen_hw", "epochs": 3, "batch_size": 64, "device": null, "input_size": 32, "lr": 0.001, "weight_decay": 0, "workers": 2, "resume": "crnn_mobilenet_v3_large_printed.pt", "vocab": "tamazight", "test_only": false, "show_samples": false, "wb": true, "push_to_hub": true, "pretrained": false, "sched": "cosine", "amp": false, "find_lr": false }

Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.