swin-tiny-patch4-window7-224-finetuned-st-wsdmhar-stacked_auc
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1284
- Accuracy: 0.9656
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.452 | 1.0 | 53 | 1.2923 | 0.5028 |
0.7902 | 2.0 | 106 | 0.6596 | 0.7262 |
0.6011 | 3.0 | 159 | 0.5092 | 0.7889 |
0.5202 | 4.0 | 212 | 0.4173 | 0.8361 |
0.4687 | 5.0 | 265 | 0.3498 | 0.8574 |
0.422 | 6.0 | 318 | 0.3566 | 0.8633 |
0.3678 | 7.0 | 371 | 0.3017 | 0.8877 |
0.3414 | 8.0 | 424 | 0.2601 | 0.9050 |
0.3249 | 9.0 | 477 | 0.2777 | 0.8884 |
0.3136 | 10.0 | 530 | 0.2625 | 0.9063 |
0.3163 | 11.0 | 583 | 0.2504 | 0.9063 |
0.3144 | 12.0 | 636 | 0.2146 | 0.9215 |
0.3062 | 13.0 | 689 | 0.2225 | 0.9198 |
0.2574 | 14.0 | 742 | 0.1928 | 0.9304 |
0.2487 | 15.0 | 795 | 0.1974 | 0.9236 |
0.2022 | 16.0 | 848 | 0.2147 | 0.9215 |
0.198 | 17.0 | 901 | 0.1708 | 0.9394 |
0.2174 | 18.0 | 954 | 0.2144 | 0.9156 |
0.225 | 19.0 | 1007 | 0.1866 | 0.9360 |
0.1886 | 20.0 | 1060 | 0.1512 | 0.9439 |
0.1797 | 21.0 | 1113 | 0.1520 | 0.9473 |
0.1779 | 22.0 | 1166 | 0.1944 | 0.9294 |
0.2006 | 23.0 | 1219 | 0.1722 | 0.9404 |
0.1647 | 24.0 | 1272 | 0.1401 | 0.9487 |
0.1766 | 25.0 | 1325 | 0.1587 | 0.9449 |
0.1347 | 26.0 | 1378 | 0.1525 | 0.9504 |
0.1533 | 27.0 | 1431 | 0.1336 | 0.9528 |
0.1322 | 28.0 | 1484 | 0.2079 | 0.9329 |
0.1291 | 29.0 | 1537 | 0.1421 | 0.9518 |
0.1397 | 30.0 | 1590 | 0.1457 | 0.9497 |
0.1189 | 31.0 | 1643 | 0.1530 | 0.9521 |
0.1404 | 32.0 | 1696 | 0.1818 | 0.9332 |
0.1431 | 33.0 | 1749 | 0.1486 | 0.9487 |
0.1214 | 34.0 | 1802 | 0.1555 | 0.9525 |
0.1195 | 35.0 | 1855 | 0.1852 | 0.9439 |
0.1161 | 36.0 | 1908 | 0.1670 | 0.9439 |
0.1052 | 37.0 | 1961 | 0.1551 | 0.9504 |
0.1004 | 38.0 | 2014 | 0.1535 | 0.9511 |
0.113 | 39.0 | 2067 | 0.1308 | 0.9514 |
0.114 | 40.0 | 2120 | 0.1752 | 0.9463 |
0.0807 | 41.0 | 2173 | 0.1467 | 0.9528 |
0.1044 | 42.0 | 2226 | 0.1289 | 0.9604 |
0.1118 | 43.0 | 2279 | 0.1602 | 0.9518 |
0.1305 | 44.0 | 2332 | 0.1699 | 0.9452 |
0.083 | 45.0 | 2385 | 0.1376 | 0.9563 |
0.1153 | 46.0 | 2438 | 0.1272 | 0.9594 |
0.0875 | 47.0 | 2491 | 0.1358 | 0.9559 |
0.0772 | 48.0 | 2544 | 0.1662 | 0.9501 |
0.084 | 49.0 | 2597 | 0.1456 | 0.9580 |
0.082 | 50.0 | 2650 | 0.1593 | 0.9483 |
0.0919 | 51.0 | 2703 | 0.1638 | 0.9483 |
0.0999 | 52.0 | 2756 | 0.1420 | 0.9532 |
0.0718 | 53.0 | 2809 | 0.1447 | 0.9549 |
0.0757 | 54.0 | 2862 | 0.1791 | 0.9490 |
0.0632 | 55.0 | 2915 | 0.1364 | 0.9604 |
0.0922 | 56.0 | 2968 | 0.1544 | 0.9525 |
0.0805 | 57.0 | 3021 | 0.1493 | 0.9552 |
0.0702 | 58.0 | 3074 | 0.1307 | 0.9570 |
0.0554 | 59.0 | 3127 | 0.1502 | 0.9532 |
0.0699 | 60.0 | 3180 | 0.1340 | 0.9590 |
0.0759 | 61.0 | 3233 | 0.1353 | 0.9576 |
0.0604 | 62.0 | 3286 | 0.1441 | 0.9570 |
0.0642 | 63.0 | 3339 | 0.1312 | 0.9601 |
0.0577 | 64.0 | 3392 | 0.1399 | 0.9597 |
0.0506 | 65.0 | 3445 | 0.1347 | 0.9594 |
0.0781 | 66.0 | 3498 | 0.1403 | 0.9601 |
0.0664 | 67.0 | 3551 | 0.1379 | 0.9587 |
0.0775 | 68.0 | 3604 | 0.1389 | 0.9573 |
0.0578 | 69.0 | 3657 | 0.1360 | 0.9570 |
0.0782 | 70.0 | 3710 | 0.1317 | 0.9580 |
0.0474 | 71.0 | 3763 | 0.1446 | 0.9594 |
0.0357 | 72.0 | 3816 | 0.1359 | 0.9618 |
0.0472 | 73.0 | 3869 | 0.1429 | 0.9590 |
0.071 | 74.0 | 3922 | 0.1333 | 0.9604 |
0.0663 | 75.0 | 3975 | 0.1327 | 0.9597 |
0.0536 | 76.0 | 4028 | 0.1396 | 0.9587 |
0.0549 | 77.0 | 4081 | 0.1392 | 0.9597 |
0.0621 | 78.0 | 4134 | 0.1408 | 0.9645 |
0.0531 | 79.0 | 4187 | 0.1406 | 0.9607 |
0.0464 | 80.0 | 4240 | 0.1463 | 0.9594 |
0.0526 | 81.0 | 4293 | 0.1355 | 0.9638 |
0.0277 | 82.0 | 4346 | 0.1464 | 0.9635 |
0.0558 | 83.0 | 4399 | 0.1487 | 0.9604 |
0.0466 | 84.0 | 4452 | 0.1319 | 0.9642 |
0.0463 | 85.0 | 4505 | 0.1443 | 0.9621 |
0.0397 | 86.0 | 4558 | 0.1494 | 0.9611 |
0.0489 | 87.0 | 4611 | 0.1428 | 0.9642 |
0.0354 | 88.0 | 4664 | 0.1387 | 0.9645 |
0.0457 | 89.0 | 4717 | 0.1362 | 0.9638 |
0.0522 | 90.0 | 4770 | 0.1332 | 0.9656 |
0.0481 | 91.0 | 4823 | 0.1352 | 0.9642 |
0.0472 | 92.0 | 4876 | 0.1375 | 0.9673 |
0.0362 | 93.0 | 4929 | 0.1354 | 0.9656 |
0.0432 | 94.0 | 4982 | 0.1306 | 0.9632 |
0.037 | 95.0 | 5035 | 0.1283 | 0.9663 |
0.0525 | 96.0 | 5088 | 0.1273 | 0.9666 |
0.0349 | 97.0 | 5141 | 0.1279 | 0.9659 |
0.0411 | 98.0 | 5194 | 0.1279 | 0.9659 |
0.044 | 99.0 | 5247 | 0.1283 | 0.9659 |
0.0289 | 100.0 | 5300 | 0.1284 | 0.9656 |
Framework versions
- Transformers 4.44.0
- Pytorch 1.12.1+cu113
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for ayubkfupm/swin-tiny-patch4-window7-224-finetuned-st-wsdmhar-stacked_auc
Base model
microsoft/swin-tiny-patch4-window7-224