mistralアーキテクチャを使った日本語LLM(0.3B)
学習環境
- A5000 × 7
学習パラメータ
hf_config.json
{
"model_type": "gpt2",
"config_name":"gpt2-medium" ,
"tokenizer_name":"/home/ubuntu/slm/spm_tokenizer_neologdn_bytefallback_nofast" ,
"train_file":"../wiki.txt",
"validation_split_percentage":5,
"output_dir":"checkpoints-mistral-300M-FA2-3",
"do_train":true,
"do_eval":true,
"prediction_loss_only":true,
"remove_unused_columns":false ,
"learning_rate":3.0e-4 ,
"weight_decay":0.1 ,
"adam_beta2":0.95 ,
"num_train_epochs":10,
"logging_dir":"checkpoints-mistral-300M-FA2-3/logs",
"logging_strategy": "steps" ,
"logging_steps":10 ,
"evaluation_strategy":"steps" ,
"save_strategy": "steps" ,
"eval_steps":500 ,
"save_steps":500 ,
"load_best_model_at_end":true ,
"save_total_limit":10 ,
"warmup_steps":4 ,
"lr_scheduler_type":"cosine" ,
"per_device_train_batch_size":8,
"per_device_eval_batch_size":8,
"block_size":1024 ,
"adam_epsilon":1.0e-4 ,
"fp16":true ,
"gradient_accumulation_steps":16,
"push_to_hub":false,
"dataloader_num_workers": 8,
"optim":"adamw_bnb_8bit" ,
"torch_compile":true
}
モデルパラメータ
{
"architectures": [
"MistralForCausalLM"
],
"bos_token_id": 0,
"eos_token_id": 0,
"hidden_act": "silu",
"hidden_size": 1024,
"initializer_range": 0.02,
"intermediate_size": 2400,
"max_position_embeddings": 4096,
"model_type": "mistral",
"num_attention_heads": 16,
"num_hidden_layers": 24,
"num_key_value_heads": 8,
"rms_norm_eps": 1e-05,
"rope_theta": 10000.0,
"sliding_window": 1024,
"tie_word_embeddings": false,
"torch_dtype": "float16",
"transformers_version": "4.35.2",
"use_cache": true,
"vocab_size": 50257
}
deepspeedのパラメータ
{
"fp16": {
"enabled": "auto",
"loss_scale": 0.0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 1,
"min_loss_scale": 0
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto",
"total_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 0,
"allgather_partitions": true,
"allgather_bucket_size": 2e6,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 2e6,
"contiguous_gradients": true,
"round_robin_gradients":true
},
"dump_state": true,
"comms_logger": {
"enabled": true,
"verbose": false,
"prof_all": true,
"debug": false
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto"
}
TensorBoardの結果
eval/loss
train/learning_rate
train/loss
モデルの推論コード
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import torch
MODEL_NAME = "./pretrain/checkpoints-mistral-300M-FA2-3/checkpoint-12000/"
torch.set_float32_matmul_precision('high')
DEVICE = "cuda"
if torch.cuda.is_available():
print("cuda")
DEVICE = "cuda"
else:
print("cpu")
DEVICE = "cpu"
# DEVICE = "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME,use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
).to(DEVICE)
# streamer = TextStreamer(tokenizer)
prompt = "大規模言語モデルとは、"
inputs = tokenizer(prompt, add_special_tokens=False,return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
inputs["input_ids"],
max_new_tokens=100,
do_sample=True,
early_stopping=False,
top_p=0.95,
top_k=50,
temperature=0.9,
# streamer=streamer,
no_repeat_ngram_size=2,
num_beams=3
)
print(outputs.tolist()[0])
outputs_txt = tokenizer.decode(outputs[0])
print(outputs_txt)
prompt = "まどマギで一番可愛いキャラは、"
inputs = tokenizer(prompt, add_special_tokens=False,return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
inputs["input_ids"],
max_new_tokens=100,
do_sample=True,
early_stopping=False,
top_p=0.95,
top_k=50,
temperature=0.9,
# streamer=streamer,
no_repeat_ngram_size=2,
num_beams=3
)
print(outputs.tolist()[0])
outputs_txt = tokenizer.decode(outputs[0])
print(outputs_txt)
備考
「ローカルLLMに向き合う会」が主催するLOCAL AI HACKATHONにてリソースをお借りして処理を行いました
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.