emotion_classifier

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6092
  • Accuracy: 0.4125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 2.0750 0.15
No log 2.0 80 2.0046 0.1875
No log 3.0 120 1.8909 0.3063
No log 4.0 160 1.7726 0.3563
No log 5.0 200 1.6970 0.3438
No log 6.0 240 1.6562 0.3937
No log 7.0 280 1.6269 0.4062
No log 8.0 320 1.6092 0.4125
No log 9.0 360 1.6012 0.4125
No log 10.0 400 1.5955 0.4125

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cpu
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
153
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for ayooke97/emotion_classifier

Finetuned
(1970)
this model

Evaluation results