finbert_flang-bert
This model is a fine-tuned version of ProsusAI/finbert on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5591
- Accuracy: 0.8612
- F1: 0.8609
- Precision: 0.8614
- Recall: 0.8612
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.8272 | 1.0 | 91 | 0.7513 | 0.6849 | 0.6737 | 0.6816 | 0.6849 |
0.5021 | 2.0 | 182 | 0.4521 | 0.8346 | 0.8352 | 0.8385 | 0.8346 |
0.3117 | 3.0 | 273 | 0.4304 | 0.8440 | 0.8443 | 0.8451 | 0.8440 |
0.2461 | 4.0 | 364 | 0.5123 | 0.8346 | 0.8331 | 0.8373 | 0.8346 |
0.1517 | 5.0 | 455 | 0.5046 | 0.8393 | 0.8377 | 0.8410 | 0.8393 |
0.1005 | 6.0 | 546 | 0.5839 | 0.8502 | 0.8513 | 0.8562 | 0.8502 |
0.0847 | 7.0 | 637 | 0.5591 | 0.8612 | 0.8609 | 0.8614 | 0.8612 |
0.0984 | 8.0 | 728 | 0.7036 | 0.8268 | 0.8260 | 0.8343 | 0.8268 |
0.1664 | 9.0 | 819 | 0.6091 | 0.8346 | 0.8320 | 0.8384 | 0.8346 |
0.1215 | 10.0 | 910 | 0.6464 | 0.8393 | 0.8397 | 0.8475 | 0.8393 |
0.0881 | 11.0 | 1001 | 0.5982 | 0.8580 | 0.8563 | 0.8591 | 0.8580 |
0.0579 | 12.0 | 1092 | 0.6472 | 0.8596 | 0.8593 | 0.8592 | 0.8596 |
Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for avinasht/finbert_flang-bert
Base model
ProsusAI/finbert