Edit model card

t5_small_samsum

This model is a fine-tuned version of google-t5/t5-small on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7255
  • Rouge1: 0.4282
  • Rouge2: 0.2003
  • Rougel: 0.36
  • Rougelsum: 0.3596
  • Gen Len: 16.7372

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.9452 1.0 921 1.7726 0.4147 0.1901 0.3492 0.3493 16.4719
1.8952 2.0 1842 1.7498 0.4237 0.1971 0.3577 0.3577 16.4548
1.8703 3.0 2763 1.7323 0.4243 0.1968 0.3571 0.3566 16.7689
1.8579 4.0 3684 1.7310 0.4262 0.2012 0.3606 0.3604 16.7641
1.8525 5.0 4605 1.7255 0.4282 0.2003 0.36 0.3596 16.7372

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for athuldinesh/t5_small_samsum

Base model

google-t5/t5-small
Finetuned
(1509)
this model

Dataset used to train athuldinesh/t5_small_samsum

Evaluation results