passive_invoices_v4.7_refined

This model is a fine-tuned version of microsoft/layoutlmv3-base on the my_csv_dataset3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0915
  • Precision: 0.8838
  • Recall: 0.9082
  • F1: 0.8958
  • Accuracy: 0.9792

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 16000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.0499 0.27 500 0.8340 0.1650 0.0685 0.0968 0.7864
0.6058 0.53 1000 0.5578 0.3949 0.3288 0.3588 0.8551
0.4061 0.8 1500 0.3891 0.5604 0.5187 0.5388 0.8984
0.2779 1.07 2000 0.3063 0.6178 0.6270 0.6223 0.9156
0.2234 1.33 2500 0.2566 0.6489 0.6511 0.6500 0.9244
0.185 1.6 3000 0.2230 0.7019 0.7136 0.7077 0.9381
0.1524 1.87 3500 0.2003 0.7038 0.7484 0.7254 0.9433
0.1249 2.14 4000 0.1652 0.7548 0.7728 0.7637 0.9546
0.1101 2.4 4500 0.1480 0.7760 0.7986 0.7872 0.9589
0.1054 2.67 5000 0.1455 0.7852 0.8163 0.8004 0.9601
0.0846 2.94 5500 0.1413 0.7828 0.8261 0.8039 0.9610
0.0822 3.2 6000 0.1285 0.8133 0.8213 0.8173 0.9649
0.0725 3.47 6500 0.1256 0.8112 0.8444 0.8275 0.9670
0.0653 3.74 7000 0.1210 0.8178 0.8552 0.8361 0.9673
0.0682 4.0 7500 0.1123 0.8347 0.8624 0.8483 0.9703
0.0562 4.27 8000 0.1084 0.8439 0.8635 0.8536 0.9723
0.0553 4.54 8500 0.1098 0.8323 0.8761 0.8536 0.9710
0.0527 4.81 9000 0.1035 0.8408 0.8819 0.8609 0.9732
0.0446 5.07 9500 0.1037 0.8594 0.8839 0.8715 0.9747
0.047 5.34 10000 0.1080 0.8631 0.8825 0.8727 0.9731
0.0402 5.61 10500 0.0955 0.8696 0.8871 0.8783 0.9768
0.0428 5.87 11000 0.0948 0.8685 0.8957 0.8819 0.9765
0.0422 6.14 11500 0.0992 0.8724 0.8957 0.8839 0.9762
0.0365 6.41 12000 0.0951 0.8731 0.9032 0.8879 0.9777
0.0351 6.67 12500 0.0930 0.8818 0.9018 0.8917 0.9786
0.0353 6.94 13000 0.0973 0.8654 0.9010 0.8828 0.9765
0.0304 7.21 13500 0.0946 0.8795 0.9053 0.8923 0.9784
0.0324 7.47 14000 0.0954 0.8805 0.9048 0.8925 0.9782
0.0327 7.74 14500 0.0920 0.8825 0.9048 0.8935 0.9786
0.0293 8.01 15000 0.0916 0.8810 0.9068 0.8937 0.9789
0.0259 8.28 15500 0.0921 0.8823 0.9062 0.8941 0.9790
0.0337 8.54 16000 0.0915 0.8838 0.9082 0.8958 0.9792

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
19
Safetensors
Model size
126M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for atatavana/passive_invoices_v4.7_refined

Finetuned
(229)
this model

Evaluation results