atatavana's picture
End of training
bab5507 verified
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - my_csv_dataset3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: passive_invoices_v4.7_refined
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: my_csv_dataset3
          type: my_csv_dataset3
          config: discharge
          split: test
          args: discharge
        metrics:
          - name: Precision
            type: precision
            value: 0.8837680590965549
          - name: Recall
            type: recall
            value: 0.9081687491602848
          - name: F1
            type: f1
            value: 0.895802272802571
          - name: Accuracy
            type: accuracy
            value: 0.9791788856304985

passive_invoices_v4.7_refined

This model is a fine-tuned version of microsoft/layoutlmv3-base on the my_csv_dataset3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0915
  • Precision: 0.8838
  • Recall: 0.9082
  • F1: 0.8958
  • Accuracy: 0.9792

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 16000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.0499 0.27 500 0.8340 0.1650 0.0685 0.0968 0.7864
0.6058 0.53 1000 0.5578 0.3949 0.3288 0.3588 0.8551
0.4061 0.8 1500 0.3891 0.5604 0.5187 0.5388 0.8984
0.2779 1.07 2000 0.3063 0.6178 0.6270 0.6223 0.9156
0.2234 1.33 2500 0.2566 0.6489 0.6511 0.6500 0.9244
0.185 1.6 3000 0.2230 0.7019 0.7136 0.7077 0.9381
0.1524 1.87 3500 0.2003 0.7038 0.7484 0.7254 0.9433
0.1249 2.14 4000 0.1652 0.7548 0.7728 0.7637 0.9546
0.1101 2.4 4500 0.1480 0.7760 0.7986 0.7872 0.9589
0.1054 2.67 5000 0.1455 0.7852 0.8163 0.8004 0.9601
0.0846 2.94 5500 0.1413 0.7828 0.8261 0.8039 0.9610
0.0822 3.2 6000 0.1285 0.8133 0.8213 0.8173 0.9649
0.0725 3.47 6500 0.1256 0.8112 0.8444 0.8275 0.9670
0.0653 3.74 7000 0.1210 0.8178 0.8552 0.8361 0.9673
0.0682 4.0 7500 0.1123 0.8347 0.8624 0.8483 0.9703
0.0562 4.27 8000 0.1084 0.8439 0.8635 0.8536 0.9723
0.0553 4.54 8500 0.1098 0.8323 0.8761 0.8536 0.9710
0.0527 4.81 9000 0.1035 0.8408 0.8819 0.8609 0.9732
0.0446 5.07 9500 0.1037 0.8594 0.8839 0.8715 0.9747
0.047 5.34 10000 0.1080 0.8631 0.8825 0.8727 0.9731
0.0402 5.61 10500 0.0955 0.8696 0.8871 0.8783 0.9768
0.0428 5.87 11000 0.0948 0.8685 0.8957 0.8819 0.9765
0.0422 6.14 11500 0.0992 0.8724 0.8957 0.8839 0.9762
0.0365 6.41 12000 0.0951 0.8731 0.9032 0.8879 0.9777
0.0351 6.67 12500 0.0930 0.8818 0.9018 0.8917 0.9786
0.0353 6.94 13000 0.0973 0.8654 0.9010 0.8828 0.9765
0.0304 7.21 13500 0.0946 0.8795 0.9053 0.8923 0.9784
0.0324 7.47 14000 0.0954 0.8805 0.9048 0.8925 0.9782
0.0327 7.74 14500 0.0920 0.8825 0.9048 0.8935 0.9786
0.0293 8.01 15000 0.0916 0.8810 0.9068 0.8937 0.9789
0.0259 8.28 15500 0.0921 0.8823 0.9062 0.8941 0.9790
0.0337 8.54 16000 0.0915 0.8838 0.9082 0.8958 0.9792

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2