Edit model card

multiberts-seed_2-step_2000k_crows_pairs_classifieronly

This model is a fine-tuned version of google/multiberts-seed_2-step_2000k on the crows_pairs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6970
  • Accuracy: 0.4603
  • Tp: 0.2748
  • Tn: 0.1854
  • Fp: 0.3013
  • Fn: 0.2384

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Tp Tn Fp Fn
0.7105 1.05 20 0.6958 0.4934 0.4404 0.0530 0.4338 0.0728
0.7148 2.11 40 0.6962 0.4801 0.2020 0.2781 0.2086 0.3113
0.7057 3.16 60 0.6972 0.4536 0.0695 0.3841 0.1026 0.4437
0.6938 4.21 80 0.6966 0.5099 0.5 0.0099 0.4768 0.0132
0.7029 5.26 100 0.6993 0.4801 0.0166 0.4636 0.0232 0.4967
0.696 6.32 120 0.6961 0.4901 0.4536 0.0364 0.4503 0.0596
0.6999 7.37 140 0.6971 0.4305 0.0762 0.3543 0.1325 0.4371
0.7079 8.42 160 0.6963 0.4702 0.2252 0.2450 0.2417 0.2881
0.7038 9.47 180 0.6960 0.5033 0.4007 0.1026 0.3841 0.1126
0.6914 10.53 200 0.6966 0.4768 0.1954 0.2815 0.2053 0.3179
0.696 11.58 220 0.6962 0.5033 0.4404 0.0629 0.4238 0.0728
0.7009 12.63 240 0.6983 0.4669 0.0530 0.4139 0.0728 0.4603
0.7062 13.68 260 0.6965 0.4669 0.3013 0.1656 0.3212 0.2119
0.6966 14.74 280 0.6990 0.4868 0.0364 0.4503 0.0364 0.4768
0.7038 15.79 300 0.6975 0.5 0.4934 0.0066 0.4801 0.0199
0.7031 16.84 320 0.6964 0.5033 0.3974 0.1060 0.3808 0.1159
0.7032 17.89 340 0.6965 0.4801 0.3311 0.1490 0.3377 0.1821
0.7004 18.95 360 0.6990 0.4868 0.0364 0.4503 0.0364 0.4768
0.695 20.0 380 0.6966 0.4636 0.2715 0.1921 0.2947 0.2417
0.7052 21.05 400 0.6974 0.4338 0.1126 0.3212 0.1656 0.4007
0.6995 22.11 420 0.6965 0.4934 0.3642 0.1291 0.3576 0.1490
0.714 23.16 440 0.6971 0.4868 0.1821 0.3046 0.1821 0.3311
0.7004 24.21 460 0.6980 0.4536 0.0596 0.3940 0.0927 0.4536
0.7025 25.26 480 0.6966 0.4801 0.3344 0.1457 0.3411 0.1788
0.6987 26.32 500 0.6975 0.4404 0.1093 0.3311 0.1556 0.4040
0.6956 27.37 520 0.6975 0.4470 0.1291 0.3179 0.1689 0.3841
0.697 28.42 540 0.6974 0.4570 0.1424 0.3146 0.1722 0.3709
0.7051 29.47 560 0.6975 0.4536 0.1358 0.3179 0.1689 0.3775
0.7024 30.53 580 0.6979 0.4338 0.0828 0.3510 0.1358 0.4305
0.6908 31.58 600 0.6969 0.4636 0.2682 0.1954 0.2914 0.2450
0.6979 32.63 620 0.6970 0.4868 0.2583 0.2285 0.2583 0.2550
0.7026 33.68 640 0.6970 0.4834 0.2583 0.2252 0.2616 0.2550
0.6998 34.74 660 0.6970 0.4834 0.2583 0.2252 0.2616 0.2550
0.6964 35.79 680 0.6969 0.4669 0.2682 0.1987 0.2881 0.2450
0.709 36.84 700 0.6968 0.4868 0.3510 0.1358 0.3510 0.1623
0.6974 37.89 720 0.6969 0.4669 0.2881 0.1788 0.3079 0.2252
0.7039 38.95 740 0.6972 0.4934 0.2318 0.2616 0.2252 0.2815
0.6963 40.0 760 0.6970 0.4768 0.2715 0.2053 0.2815 0.2417
0.6891 41.05 780 0.6970 0.4801 0.2682 0.2119 0.2748 0.2450
0.7008 42.11 800 0.6969 0.4868 0.3245 0.1623 0.3245 0.1887
0.7026 43.16 820 0.6971 0.4934 0.2550 0.2384 0.2483 0.2583
0.6969 44.21 840 0.6974 0.4834 0.1821 0.3013 0.1854 0.3311
0.7057 45.26 860 0.6972 0.4967 0.2285 0.2682 0.2185 0.2848
0.6951 46.32 880 0.6971 0.4901 0.2550 0.2351 0.2517 0.2583
0.7041 47.37 900 0.6969 0.4934 0.3311 0.1623 0.3245 0.1821
0.7019 48.42 920 0.6969 0.4768 0.3046 0.1722 0.3146 0.2086
0.6998 49.47 940 0.6970 0.4603 0.2748 0.1854 0.3013 0.2384

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train asun17904/multiberts-seed_2-step_2000k_crows_pairs_classifieronly

Evaluation results