multiberts-seed_0_stereoset_classifieronly
This model is a fine-tuned version of google/multiberts-seed_0 on the stereoset dataset. It achieves the following results on the evaluation set:
- Loss: 0.6824
- Accuracy: 0.5856
- Tp: 0.3414
- Tn: 0.2441
- Fp: 0.2316
- Fn: 0.1829
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Tp | Tn | Fp | Fn |
---|---|---|---|---|---|---|---|---|
0.7177 | 0.43 | 20 | 0.7071 | 0.4584 | 0.1028 | 0.3556 | 0.1201 | 0.4215 |
0.7096 | 0.85 | 40 | 0.6953 | 0.4867 | 0.3234 | 0.1633 | 0.3124 | 0.2009 |
0.7126 | 1.28 | 60 | 0.6988 | 0.4702 | 0.0573 | 0.4129 | 0.0628 | 0.4670 |
0.7012 | 1.7 | 80 | 0.6919 | 0.5141 | 0.2794 | 0.2347 | 0.2410 | 0.2449 |
0.7016 | 2.13 | 100 | 0.6881 | 0.5471 | 0.4466 | 0.1005 | 0.3752 | 0.0777 |
0.7027 | 2.55 | 120 | 0.6913 | 0.5204 | 0.2520 | 0.2684 | 0.2072 | 0.2724 |
0.6918 | 2.98 | 140 | 0.6894 | 0.5526 | 0.3564 | 0.1962 | 0.2794 | 0.1680 |
0.697 | 3.4 | 160 | 0.6886 | 0.5628 | 0.3807 | 0.1821 | 0.2936 | 0.1436 |
0.696 | 3.83 | 180 | 0.6876 | 0.5526 | 0.4066 | 0.1460 | 0.3297 | 0.1177 |
0.7047 | 4.26 | 200 | 0.6936 | 0.4984 | 0.1099 | 0.3885 | 0.0871 | 0.4144 |
0.6945 | 4.68 | 220 | 0.6884 | 0.5628 | 0.3713 | 0.1915 | 0.2841 | 0.1531 |
0.7051 | 5.11 | 240 | 0.6893 | 0.5518 | 0.3140 | 0.2378 | 0.2378 | 0.2104 |
0.6889 | 5.53 | 260 | 0.6869 | 0.5581 | 0.3901 | 0.1680 | 0.3077 | 0.1342 |
0.7033 | 5.96 | 280 | 0.6872 | 0.5612 | 0.3799 | 0.1813 | 0.2943 | 0.1444 |
0.7039 | 6.38 | 300 | 0.6904 | 0.5330 | 0.2096 | 0.3234 | 0.1523 | 0.3148 |
0.6945 | 6.81 | 320 | 0.6861 | 0.5573 | 0.4105 | 0.1468 | 0.3289 | 0.1138 |
0.6969 | 7.23 | 340 | 0.6899 | 0.5526 | 0.2575 | 0.2951 | 0.1805 | 0.2669 |
0.6951 | 7.66 | 360 | 0.6859 | 0.5573 | 0.4105 | 0.1468 | 0.3289 | 0.1138 |
0.6901 | 8.09 | 380 | 0.6903 | 0.5377 | 0.2057 | 0.3320 | 0.1436 | 0.3187 |
0.6839 | 8.51 | 400 | 0.6865 | 0.5644 | 0.3870 | 0.1774 | 0.2983 | 0.1374 |
0.6965 | 8.94 | 420 | 0.6875 | 0.5683 | 0.3391 | 0.2292 | 0.2465 | 0.1852 |
0.6887 | 9.36 | 440 | 0.6869 | 0.5667 | 0.3257 | 0.2410 | 0.2347 | 0.1986 |
0.6945 | 9.79 | 460 | 0.6852 | 0.5581 | 0.3846 | 0.1735 | 0.3022 | 0.1397 |
0.6864 | 10.21 | 480 | 0.6861 | 0.5659 | 0.3509 | 0.2151 | 0.2606 | 0.1735 |
0.6935 | 10.64 | 500 | 0.6876 | 0.5628 | 0.2794 | 0.2834 | 0.1923 | 0.2449 |
0.6981 | 11.06 | 520 | 0.6865 | 0.5699 | 0.3250 | 0.2449 | 0.2308 | 0.1994 |
0.7011 | 11.49 | 540 | 0.6874 | 0.5628 | 0.2755 | 0.2873 | 0.1884 | 0.2488 |
0.6833 | 11.91 | 560 | 0.6842 | 0.5573 | 0.4035 | 0.1538 | 0.3218 | 0.1209 |
0.692 | 12.34 | 580 | 0.6913 | 0.5220 | 0.1350 | 0.3870 | 0.0887 | 0.3893 |
0.6902 | 12.77 | 600 | 0.6855 | 0.5683 | 0.3713 | 0.1970 | 0.2786 | 0.1531 |
0.6905 | 13.19 | 620 | 0.6853 | 0.5699 | 0.3736 | 0.1962 | 0.2794 | 0.1507 |
0.6866 | 13.62 | 640 | 0.6872 | 0.5683 | 0.2841 | 0.2841 | 0.1915 | 0.2402 |
0.7 | 14.04 | 660 | 0.6853 | 0.5714 | 0.3587 | 0.2127 | 0.2630 | 0.1656 |
0.6927 | 14.47 | 680 | 0.6869 | 0.5683 | 0.2684 | 0.2998 | 0.1758 | 0.2559 |
0.6891 | 14.89 | 700 | 0.6854 | 0.5683 | 0.3344 | 0.2339 | 0.2418 | 0.1900 |
0.684 | 15.32 | 720 | 0.6867 | 0.5691 | 0.2708 | 0.2983 | 0.1774 | 0.2535 |
0.6969 | 15.74 | 740 | 0.6842 | 0.5691 | 0.3854 | 0.1837 | 0.2920 | 0.1389 |
0.6782 | 16.17 | 760 | 0.6841 | 0.5620 | 0.3972 | 0.1648 | 0.3108 | 0.1272 |
0.7023 | 16.6 | 780 | 0.6868 | 0.5777 | 0.3046 | 0.2732 | 0.2025 | 0.2198 |
0.6979 | 17.02 | 800 | 0.6841 | 0.5722 | 0.3823 | 0.1900 | 0.2857 | 0.1421 |
0.6875 | 17.45 | 820 | 0.6840 | 0.5691 | 0.3846 | 0.1845 | 0.2912 | 0.1397 |
0.6852 | 17.87 | 840 | 0.6867 | 0.5675 | 0.2598 | 0.3077 | 0.1680 | 0.2645 |
0.688 | 18.3 | 860 | 0.6850 | 0.5691 | 0.3195 | 0.2496 | 0.2261 | 0.2049 |
0.6941 | 18.72 | 880 | 0.6858 | 0.5754 | 0.2834 | 0.2920 | 0.1837 | 0.2410 |
0.6942 | 19.15 | 900 | 0.6828 | 0.5667 | 0.4215 | 0.1452 | 0.3305 | 0.1028 |
0.6883 | 19.57 | 920 | 0.6842 | 0.5699 | 0.3438 | 0.2261 | 0.2496 | 0.1805 |
0.6942 | 20.0 | 940 | 0.6858 | 0.5722 | 0.2677 | 0.3046 | 0.1711 | 0.2567 |
0.6908 | 20.43 | 960 | 0.6827 | 0.5699 | 0.4027 | 0.1672 | 0.3085 | 0.1217 |
0.6857 | 20.85 | 980 | 0.6849 | 0.5777 | 0.3014 | 0.2763 | 0.1994 | 0.2229 |
0.7046 | 21.28 | 1000 | 0.6836 | 0.5761 | 0.3587 | 0.2174 | 0.2582 | 0.1656 |
0.6856 | 21.7 | 1020 | 0.6832 | 0.5691 | 0.3807 | 0.1884 | 0.2873 | 0.1436 |
0.6969 | 22.13 | 1040 | 0.6878 | 0.5447 | 0.1978 | 0.3469 | 0.1287 | 0.3265 |
0.6957 | 22.55 | 1060 | 0.6854 | 0.5769 | 0.2991 | 0.2779 | 0.1978 | 0.2253 |
0.6903 | 22.98 | 1080 | 0.6842 | 0.5761 | 0.3375 | 0.2386 | 0.2370 | 0.1868 |
0.6923 | 23.4 | 1100 | 0.6869 | 0.5683 | 0.2347 | 0.3336 | 0.1421 | 0.2896 |
0.7005 | 23.83 | 1120 | 0.6852 | 0.5801 | 0.3061 | 0.2739 | 0.2017 | 0.2182 |
0.6918 | 24.26 | 1140 | 0.6828 | 0.5722 | 0.3807 | 0.1915 | 0.2841 | 0.1436 |
0.701 | 24.68 | 1160 | 0.6839 | 0.5801 | 0.3367 | 0.2433 | 0.2323 | 0.1876 |
0.6947 | 25.11 | 1180 | 0.6831 | 0.5722 | 0.3689 | 0.2033 | 0.2724 | 0.1554 |
0.6941 | 25.53 | 1200 | 0.6833 | 0.5754 | 0.3571 | 0.2182 | 0.2575 | 0.1672 |
0.6877 | 25.96 | 1220 | 0.6836 | 0.5808 | 0.3446 | 0.2363 | 0.2394 | 0.1797 |
0.6891 | 26.38 | 1240 | 0.6829 | 0.5706 | 0.3673 | 0.2033 | 0.2724 | 0.1570 |
0.6954 | 26.81 | 1260 | 0.6834 | 0.5769 | 0.3509 | 0.2261 | 0.2496 | 0.1735 |
0.6854 | 27.23 | 1280 | 0.6845 | 0.5769 | 0.3140 | 0.2630 | 0.2127 | 0.2104 |
0.6829 | 27.66 | 1300 | 0.6866 | 0.5581 | 0.2166 | 0.3414 | 0.1342 | 0.3077 |
0.6936 | 28.09 | 1320 | 0.6826 | 0.5746 | 0.3768 | 0.1978 | 0.2779 | 0.1476 |
0.6808 | 28.51 | 1340 | 0.6831 | 0.5777 | 0.3548 | 0.2229 | 0.2527 | 0.1695 |
0.6909 | 28.94 | 1360 | 0.6836 | 0.5832 | 0.3375 | 0.2457 | 0.2300 | 0.1868 |
0.6863 | 29.36 | 1380 | 0.6835 | 0.5793 | 0.3430 | 0.2363 | 0.2394 | 0.1813 |
0.6897 | 29.79 | 1400 | 0.6825 | 0.5746 | 0.3783 | 0.1962 | 0.2794 | 0.1460 |
0.6889 | 30.21 | 1420 | 0.6838 | 0.5785 | 0.3273 | 0.2512 | 0.2245 | 0.1970 |
0.6917 | 30.64 | 1440 | 0.6828 | 0.5746 | 0.3619 | 0.2127 | 0.2630 | 0.1625 |
0.6953 | 31.06 | 1460 | 0.6849 | 0.5769 | 0.2786 | 0.2983 | 0.1774 | 0.2457 |
0.6819 | 31.49 | 1480 | 0.6868 | 0.5526 | 0.1868 | 0.3658 | 0.1099 | 0.3375 |
0.6915 | 31.91 | 1500 | 0.6830 | 0.5808 | 0.3383 | 0.2425 | 0.2331 | 0.1860 |
0.6968 | 32.34 | 1520 | 0.6815 | 0.5793 | 0.3987 | 0.1805 | 0.2951 | 0.1256 |
0.6816 | 32.77 | 1540 | 0.6824 | 0.5808 | 0.3587 | 0.2221 | 0.2535 | 0.1656 |
0.695 | 33.19 | 1560 | 0.6839 | 0.5793 | 0.2991 | 0.2802 | 0.1954 | 0.2253 |
0.6784 | 33.62 | 1580 | 0.6847 | 0.5801 | 0.2684 | 0.3116 | 0.1641 | 0.2559 |
0.688 | 34.04 | 1600 | 0.6825 | 0.5793 | 0.3548 | 0.2245 | 0.2512 | 0.1695 |
0.6872 | 34.47 | 1620 | 0.6835 | 0.5808 | 0.3132 | 0.2677 | 0.2080 | 0.2111 |
0.6975 | 34.89 | 1640 | 0.6828 | 0.5808 | 0.3469 | 0.2339 | 0.2418 | 0.1774 |
0.6889 | 35.32 | 1660 | 0.6837 | 0.5824 | 0.3124 | 0.2700 | 0.2057 | 0.2119 |
0.6873 | 35.74 | 1680 | 0.6825 | 0.5785 | 0.3611 | 0.2174 | 0.2582 | 0.1633 |
0.6938 | 36.17 | 1700 | 0.6825 | 0.5777 | 0.3611 | 0.2166 | 0.2590 | 0.1633 |
0.7051 | 36.6 | 1720 | 0.6829 | 0.5816 | 0.3422 | 0.2394 | 0.2363 | 0.1821 |
0.6894 | 37.02 | 1740 | 0.6822 | 0.5824 | 0.3626 | 0.2198 | 0.2559 | 0.1617 |
0.6987 | 37.45 | 1760 | 0.6828 | 0.5856 | 0.3414 | 0.2441 | 0.2316 | 0.1829 |
0.6916 | 37.87 | 1780 | 0.6835 | 0.5777 | 0.3061 | 0.2716 | 0.2041 | 0.2182 |
0.6835 | 38.3 | 1800 | 0.6830 | 0.5816 | 0.3234 | 0.2582 | 0.2174 | 0.2009 |
0.6866 | 38.72 | 1820 | 0.6832 | 0.5863 | 0.3203 | 0.2661 | 0.2096 | 0.2041 |
0.6856 | 39.15 | 1840 | 0.6829 | 0.5848 | 0.3320 | 0.2527 | 0.2229 | 0.1923 |
0.6884 | 39.57 | 1860 | 0.6821 | 0.5816 | 0.3595 | 0.2221 | 0.2535 | 0.1648 |
0.6833 | 40.0 | 1880 | 0.6828 | 0.5863 | 0.3352 | 0.2512 | 0.2245 | 0.1892 |
0.6805 | 40.43 | 1900 | 0.6826 | 0.5840 | 0.3407 | 0.2433 | 0.2323 | 0.1837 |
0.6941 | 40.85 | 1920 | 0.6817 | 0.5754 | 0.3681 | 0.2072 | 0.2684 | 0.1562 |
0.6902 | 41.28 | 1940 | 0.6821 | 0.5816 | 0.3532 | 0.2284 | 0.2473 | 0.1711 |
0.692 | 41.7 | 1960 | 0.6826 | 0.5863 | 0.3383 | 0.2480 | 0.2276 | 0.1860 |
0.6927 | 42.13 | 1980 | 0.6824 | 0.5848 | 0.3454 | 0.2394 | 0.2363 | 0.1790 |
0.6849 | 42.55 | 2000 | 0.6822 | 0.5793 | 0.3501 | 0.2292 | 0.2465 | 0.1743 |
0.6836 | 42.98 | 2020 | 0.6821 | 0.5801 | 0.3540 | 0.2261 | 0.2496 | 0.1703 |
0.6916 | 43.4 | 2040 | 0.6822 | 0.5824 | 0.3477 | 0.2347 | 0.2410 | 0.1766 |
0.6825 | 43.83 | 2060 | 0.6824 | 0.5832 | 0.3446 | 0.2386 | 0.2370 | 0.1797 |
0.6939 | 44.26 | 2080 | 0.6825 | 0.5863 | 0.3383 | 0.2480 | 0.2276 | 0.1860 |
0.6899 | 44.68 | 2100 | 0.6820 | 0.5801 | 0.3509 | 0.2292 | 0.2465 | 0.1735 |
0.6873 | 45.11 | 2120 | 0.6819 | 0.5801 | 0.3587 | 0.2214 | 0.2543 | 0.1656 |
0.696 | 45.53 | 2140 | 0.6820 | 0.5801 | 0.3564 | 0.2237 | 0.2520 | 0.1680 |
0.697 | 45.96 | 2160 | 0.6824 | 0.5856 | 0.3485 | 0.2370 | 0.2386 | 0.1758 |
0.6891 | 46.38 | 2180 | 0.6825 | 0.5848 | 0.3430 | 0.2418 | 0.2339 | 0.1813 |
0.6828 | 46.81 | 2200 | 0.6822 | 0.5816 | 0.3501 | 0.2316 | 0.2441 | 0.1743 |
0.6904 | 47.23 | 2220 | 0.6823 | 0.5848 | 0.3477 | 0.2370 | 0.2386 | 0.1766 |
0.6891 | 47.66 | 2240 | 0.6825 | 0.5863 | 0.3391 | 0.2473 | 0.2284 | 0.1852 |
0.6867 | 48.09 | 2260 | 0.6826 | 0.5871 | 0.3383 | 0.2488 | 0.2268 | 0.1860 |
0.688 | 48.51 | 2280 | 0.6824 | 0.5832 | 0.3430 | 0.2402 | 0.2355 | 0.1813 |
0.6938 | 48.94 | 2300 | 0.6824 | 0.5856 | 0.3399 | 0.2457 | 0.2300 | 0.1845 |
0.6823 | 49.36 | 2320 | 0.6824 | 0.5863 | 0.3407 | 0.2457 | 0.2300 | 0.1837 |
0.6886 | 49.79 | 2340 | 0.6824 | 0.5856 | 0.3414 | 0.2441 | 0.2316 | 0.1829 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.2
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train asun17904/multiberts-seed_0_stereoset_classifieronly
Evaluation results
- Accuracy on stereosetvalidation set self-reported0.586